

Indian Minerals Yearbook 2012 (Part-I)

51st Edition

STATE REVIEWS (Karnataka)

(FINAL RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

May, 2014

KARNATAKA

Mineral Resources

Karnataka has the distinction of being the principal gold producing State in the country. The State is the sole producer of felsite and leading producer of iron ore, chromite and dunite. Karnataka hosts the country's 78% vanadium ore, 73% iron ore (magnetite), 42% tungsten ore, 37% asbestos, 28% limestone, 22% gold, 20% granite, 17% dunite, and 14% corundum resources.

The important mineral-occurrence found in the State are **bauxite** in Belgaum, Chickmagalur, Uttara & Dakshina Kannada and Udupi districts; china clay in Bengaluru, Belgaum, Bellary, Bidar, Chickmagalur, Dharwad, Gadag, Hassan, Haveri, Kolar, Uttara & Dakshina Kannada, Shimoga and Tumkur districts; chromite in Chickmagalur, Hassan and Mysore districts; dolomite in Bagalkot, Belgaum, Bijapur, Chitradurga, Mysore, Uttara Kannada and Tumkur districts; dunite/pyroxenite in Chickmagalur, Hassan and Mysore districts; felspar in Bengaluru, Belgaum, Chitradurga and Hassan districts; fireclay in Bengaluru, Chitradurga, Dharwad, Hassan, Kolar, Shimoga and Tumkur districts; gold in Chitradurga, Dharwad, Gadag, Gulbarga, Hassan, Haveri, Kolar, Raichur and Tumkur districts; iron ore (hematite) in Bagalkot, Bellary, Bijapur, Chickmagalur, Chitradurga, Dharwad, Gadag, Uttara Kannada, Shimoga and Tumkur districts; iron ore (magnetite) in Chickmagalur, Hassan, Uttara & Dakshina Kannada and Shimoga districts; kyanite in Chickmagalur, Chitradurga, Coorg, Mandya, Mysore, Shimoga and Dakshina Kannada districts; limestone in Bagalkot, Belgaum, Bellary, Bijapur, Chickmagalur, Chitradurga, Davangere, Gadag, Gulbarga, Hassan, Mysore, Uttara & Dakshina Kannada, Shimoga, Tumkur and Udupi districts; magnesite in Coorg, Mandya and Mysore districts; manganese ore in Belgaum, Bellary,

Chickmagalur, Chitradurga, Davangere, Uttara Kannada, Shimoga and Tumkur districts; ochre in Bellary and Bidar districts; quartz/silica sand in Bagalkot, Bengaluru, Belgaum, Bellary, Chickmagalur, Chitradurga, Davangere, Dharwad, Gadag, Gulbarga, Hassan, Haveri, Kolar, Koppal, Mandya, Mysore, Uttara & Dakshina Kannada, Raichur, Shimoga, Tumkur and Udupi districts; Quartzite in Belgaum district; and talc/steatite/soapstone in Bellary, Chickmagalur, Chitradurga, Hassan, Mandya, Mysore, Raichur and Tumkur districts.

Other minerals that occur in the State are asbestos in Chickmagalur, Hassan, Mandya, Mysore and Shimoga districts; barytes and pyrite in Chitradurga district; calcite in Belgaum, Bijapur and Mysore districts; copper in Chickmagalur, Chitradurga, Gulbarga, Hassan, Uttara Kannada, Raichur and Shimoga districts; corundum in Bengaluru, Bellary, Chitradurga, Coorg, Hassan, Mandya, Mysore and Tumkur districts; fuller's earth in Belgaum and Gulbarga districts; granite in Bagalkot, Bengaluru, Bellary, Bijapur, Chamrajanagar, Chickmagalur, Chitradurga, Coorg, Dharwar, Gadag, Gulbarga, Hassan, Kolar, Koppal, Mandya, Mysore, Uttara & Dakshina Kannada, Raichur, Tumkur and Udupi districts; graphite in Kolar and Mysore districts; gypsum in Gulbarga district; molybdenum in Kolar and Raichur districts; nickel in Uttara Kannada district; sillimanite in Hassan, Mysore and Dakshina Kannada districts; silver in Chitradurga and Raichur districts; titanium minerals in Hassan, Uttara Kannada and Shimoga districts; tungsten in Gadag, Kolar and Raichur districts; vanadium in Hassan, Uttara Kannada and Shimoga districts; and vermiculite in Hassan, Mandya and Mysore districts (Table - 1).

Exploration & Development

The details of exploration activities conducted by various agencies during 2011-12 are furnished in Table - 2.

				Reserves	rves					Remainin	Remaining resources				E
	Mineral		Proved	Probê	ible	Total	Feasibility	Pre-feas	sibility	Measured	Indicated	Inferred 57222	Reconnaissar	ice Total	resources
(m) (m) <th></th> <th>-</th> <th></th> <th>STD121</th> <th>STD122</th> <th>(Y)</th> <th>117/116</th> <th>STD221</th> <th>STD222</th> <th>100010</th> <th>200710</th> <th>cccute</th> <th>400U16</th> <th>(g)</th> <th>(A+B)</th>		-		STD121	STD122	(Y)	117/116	STD221	STD222	100010	200710	cccute	400U16	(g)	(A+B)
is in the integration of the	Asbestos	tonne	ı			ı	,	·	ı	ı	2441037	5841420	ı	8282457	8282457
ind 000 tounes 539 542 - 5441 1735 394 10 - 2220 45405 - 49764 55703 ind 000 tounes 313 333 233 233 233 233 2333 25646 2553 - 65333 65333 65333 <td>Barytes</td> <td>tonne</td> <td>ı</td> <td>I</td> <td>I</td> <td>ı</td> <td>I</td> <td>·</td> <td>ı</td> <td>I</td> <td>I</td> <td>15175</td> <td>ı</td> <td>15175</td> <td>15175</td>	Barytes	tonne	ı	I	I	ı	I	·	ı	I	I	15175	ı	15175	15175
it it<	Bauxite	000 tonnes		542	I	5941	1735	394	10	ı	2220	45405	ı	49764	55705
index 040 tonnes 943 835 240 738 3390 2036 443 2468 6030 256466 25833 inte 000 tonnes 837 117 745 250 218 736 25333 333 53	Calcite	tonne	'	'	'	'	·		64		14400	51865		66329	66329
mile 00 tomes 333 395 17 745 250 218 96 - 20 303 - 887 1632 er on 131 313 351 131 30.65 - - 873 033 - 887 1632 er 000 tomes 836 17.56 4.31 30.65 - - - 3139 3333 14169 5.5600 646860	China clay	000 tonnes	943	835	280	2058	819	738	3390	220360	443	24685		256466	258524
er 000 tomes 8.3 1301 373 2510 - - 108.65 - - 108.65 31333 33333 ted 000 tomes 8.78 17.56 3101 373 3510 - - 198.65 - - 198.65 - - 198.65 - - - 198.65 - - - 198.65 - - - 198.65 - - - - 198.65 - </td <td>Chromite</td> <td>000 tonnes</td> <td></td> <td>395</td> <td>17</td> <td>745</td> <td>250</td> <td>218</td> <td>96</td> <td>·</td> <td>20</td> <td>303</td> <td></td> <td>887</td> <td>1632</td>	Chromite	000 tonnes		395	17	745	250	218	96	·	20	303		887	1632
\mathbf{r} 000 (ommes) 836 1301 373 2510 5577 9661 $\mathbf{-}$ 31025 333533 333533 333533 333533 333533 333533 333533 333533 333533 333533 333533 333533 333533 333533 333333 333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 3333333 33333333 3333333333333333 $33333333333333333333333333333333333$	Copper														
Image 00 tomes 8.78 17.56 4.31 30.65 - - 112.4 22.00 65.77 99.61 - 198.62 648660 64860 64860 64860 64860 64860 64860 64860 64860 64860 64860 64860 64860 64860	Ore	000 tonnes		1301	373	2510	ı	ı	2008	1750	6833	20434		31025	
addmtonne $ -$ <t< td=""><td>Metal</td><td>000 tonnes</td><td></td><td></td><td>4.31</td><td>30.65</td><td>ı</td><td>ı</td><td>11.24</td><td>22.00</td><td>65.77</td><td>99.61</td><td></td><td>198.62</td><td></td></t<>	Metal	000 tonnes			4.31	30.65	ı	ı	11.24	22.00	65.77	99.61		198.62	
mite000 tonnes86077313901088912836518585782615391851917578465852-5337516artonnes3718-223394023090-4149-228058lay000 tonnes3718-22339402230903113317730039003413336lay000 tonnes95324855037925956871-22309-3413336lay000 tonnes95324855037925956871-2230031333313336lay000 tonnes953248553205820058200582049-22309-2230503413336lay000 tonnes95324855820258200582007500750075133249799688204595270363847163331038te70.831.777.75110.413.092.490.78210733235500847163331038te70.831.777.75110.413.092.490.78215122249799688204595216492722455923650847163331038te70.831.777.75110.413.092.490.78120.728.67273.6927539<	Corundum	tonne	,	ı	ı	'	ı	756	105885	13	38	14169	526000	646860	646860
te< 000 tomes 3718 - 223 3940 - - 23009 - 4149 - 28058 - 28058 - 28058 - 28058 - 28058 - 28058 - 28058 - 28058 - 28058 - - 28059 - 17330 3900 341333 6 - 2300 13734 - 28058 - 28058 - 28058 - 13734 - 13734 - 13734 - 13734 - 13734 - 28058 6871 - 226 5259 - 13734 - 2022916 2022916 2022916 2022916 2022916 2022916 2022916 2022916 2022916 202 2022916 2022916 2022916 2022916 2022916 2022916 2023916 2023916 2023916 2023916 2023916 2023916 2023916 2023916 202360 21633 212333	Dolomite	000 tonnes			10889	128365	18585	7826	15391	8519	17578	465852		533751	662116
artonne 119525 69575 107055 296155 $ 25000$ 135133 177300 3900 341333 6 lay000 tonnes 95 324 85 503 792 595 6871 $ 226$ 5250 $ 17300$ 3900 341333 6 r's earthtonne $ 58200$ 58200 58200 58200 58200 58200 790000 215132 2479968 8204595 127126 $ 2022916$ 20 retonne 16007614 7215335 863529 24086478 1168000 790000 215132 24979968 8204595 12003638 37355000 84716333 1088 retonne 70.89 31.77 7.75 110.41 3.09 2.49 0.78 120.7 28.67 272 43.66 226.59 re 000 cum 26333 19389 21836 67588 $ 24979968$ 8204595 120076 272 43.66 226.59 re 000 cum 26333 19389 21836 37357000 84716333 1088 tue 70.8 170.7 28.67 120.73 272 43.66 226.59 226.59 tue 000 cum 26333 19389 21836 7500 18750 2120736 272 43.66 23734 25659 27736 244450 tue 000 cum <th< td=""><td>Dunite</td><td>000 tonnes</td><td></td><td>I</td><td>223</td><td>3940</td><td>I</td><td>·</td><td>ı</td><td>23909</td><td>I</td><td>4149</td><td>ı</td><td>28058</td><td>31998</td></th<>	Dunite	000 tonnes		I	223	3940	I	·	ı	23909	I	4149	ı	28058	31998
lay000 tonmes95324855037925956871-2265250-13734r's earthtonne-58200582005820058200582005820058200582005816401471276-2029162reris5835958359240864781168000790000215132249796882045951200363837355000847163331088rei-70.8931.777.75110.413.092.490.78120.7328.6727.243.66226.59rei-000 cu m2636319389218366758823812316258012784256.59927030692rei-000 cu m2636319389218366758823812316258012784256.59927030692stone000 cu m2636319389218366758875001875018760-23823650927030692one727208201312228597500187501870021623812316258012784244360one000 cu m26695486731928750018712039169182181281812184623184one000 cu m26856954867319417120259231245454428	relspar	tonne	119525	69575	107055	296155		ı	'	25000	135133	177300		341333	637488
	rireclay	000 tonnes	95	324	85	503	792	595	6871		226	5250		13734	14238
re re re re<	fuller's earth	tonne	·	'	58200	58200	·	·		·	551640	1471276		2022916	2081116
tonne 16007614 7215335 863529 24086478 1168000 790000 215132 24979968 8204595 12003638 37355000 84716333 1088 tonne 70.89 31.77 7.75 110.41 3.09 2.49 0.78 120.7 28.67 27.2 43.66 226.59 3 000 cu m 26363 19389 21836 67588 - - 238 1231625 8012784 25659 9270306 93 000 cu m 26363 1312 22859 7500 18750 - 238 1231625 8012784 25659 9270306 93 000 tonnes 727 20820 1312 22859 7500 18750 - - - 44450 - - - 44450 - 3784 - 3784 - 3784 - 3784 - 3784 - 3784 - 3784 - 3784 - 3784 <	blot														
tonne 16007614 7215335 863529 24086478 116800 790000 215132 24979968 8204595 12003638 37355000 84716333 1088 tonne 70.89 31.77 7.75 110.41 3.09 2.49 0.78 120.7 28.67 27.2 43.66 226.59 3 000 cu m 26363 19389 21836 67588 - - 238 1231625 8012784 25659 9270306 93 tonne 727 20820 1312 22859 7500 18750 - - 238 1231625 8012784 25659 9270306 93 tonne 727 20820 1312 22859 7500 18750 - - 24450 - - 44450 000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811 218	Ore														
tonne 70.89 31.77 7.75 110.41 3.09 2.49 0.78 120.7 28.67 27.2 43.66 226.59 3 000 cu m 26363 19389 21836 67588 - - 238 1231625 8012784 25659 9270306 93 000 cu m 26363 19389 21836 67588 - - 238 1231625 8012784 25659 9270306 93 000 cu m 26363 19389 21820 18750 - - 218200 - 44450 000 tonnes - - - - - - 3784 - 3784 000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811 21	(primary) Metal		6007614	7215335	863529 2	24086478	1168000	790000	215132	24979968	8204595	12003638		84716333	08802811
000 cu m 26363 19389 21836 67588 - - - 238 1231625 8012784 25659 9270306 93 tonne 727 20820 1312 22859 7500 18750 - - 18200 - - 44450 000 tonnes - - - - - 3784 - 3784 - 3784 000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811 21	(primary) Branite	tonne	70.89	31.77	7.75	110.41	3.09	2.49	0.78	120.7	28.67	27.2		226.59	337.00
tonne 727 20820 1312 22859 7500 18750 - - 18200 - - 44450 000 tonnes - - - - - - 3784 - 3784 - 3784 000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811 21	Dim. stone)	000 cu m	26363		21836	67588	ı	ı	'	238	1231625	8012784	25659	9270306	9337894
000 tonnes 3784 - 3784 - 3784 000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811 215	Graphite	tonne	727	20820	1312	22859	7500	18750			18200	I		44450	61309
000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811	Gypsum	000 tonnes	'	'	'	'	'		'		'	3784		3784	3784
000 tonnes 602685 95458 178723 876866 73194 171202 59231 245454 42843 501669 188218 1281811	lron ore														
	(Hematite)	000 tonnes	602685	95458	178723	876866	73194	171202	59231	245454	42843	501669		1281811	2158678

Table - 1 : Reserves/Resources of Minerals as on 1.4.2005 : Karnataka

	S			744	138	175	4046	96188			ATI	R 61/1	0.23 N.		WS	1.50	3000	3321		90848	125		577	6.07	
Total	resources	(A+B)		7801744	13035438	52199775				1320900		13	0	1786367		1	3(33		306	982725		9064677	9	
	ce Total	(g)		7801744	13035438	51102029	3349	80085		1320900		1719	0.23	1786367		1.50	3000	1920		75987	982725		383612	3.40	
	Reconnaissance Total	S1D334		340000	-S	8240	'	270				·	·	20000		1.50		1730		525	'			ı	
		555U16		5345018	10688721	34579866	2734	52893		1320900		1719	0.23	'		'	3000			49508	982725		314150	2.92	
Remaining resources	Indicated	255016		479372	1610502	13919929	10	7385				ı	ı	ı				ı		100				ı	
Remaining	Measured	100010		1498957	386247	1573788	88	2227		'		'	'	'		'	'			205			'	'	
	ibility	STD222		18375	18843	453541	499	7523		ı		ı	ı	1766367		ı	'	190		8276			69462	0.48	
	Pre-feasibility	STD221		I	21600	394671		3730						ı		I				4970			ı	ı	
	Feasibility	117016		120022	309525	171995	18	6056		'		'	'	'		'	'	'		12402	'		'	ı	
		(Y)		ı	'	1097745	697	16103		'		'	'	'		'	'	1401		14861	'		8681065	2.67	
ves	ble	STD122		·	'	72518 109	163	2821		'		'	'	'		'	'	1011		2375	ı		'	ı	
Reserves	Probable	STD121		ı	ı	486300	202	1827				ı	ı	ı		'				3809	ı			·	
	Proved			ı	ı	538927	332	11455		ı		ı	ı	ı		ı	·	390		8677	·		8681065	2.67	
	Unit	7 1		000 tonnes	tonne	000 tonnes 538927	000 tonnes	Manganese ore 000 tonnes		tonne		tonne	Million tonnes	tonnes	dn	tonne	000 tonnes	000 tonnes		000 tonnes	tonne		tonne	tonne	
	Mineral		Iron ore	(Magnetite)	Kyanite	Limestone	Magnesite	Manganese oi	Molybdenum	Ore	Contained	MoS_2	Nickel ore	Ochre	Platinum group	of metals	Pyrites	Quartzite	Quartz-	silica sand	Sillimanite	Silver	Ore	Metal	Talc-steatite-

(Contd.)

·

.

soapstone 000 tonnes

Table-1 (Contd.)

11-4

Table-1 (Concld.)													
			Reserves						Rem	Remaining resources	Irces		
Mineral	Unit	Proved	Probable	Total	Feasibility	Pre-feasibility	sibility	Measured	Indicated	Inferred	Inferred Reconnaissance Total	nce Total	resources
		III QLS	STD121 STD122	(¥)	STD211	STD221	STD222	STD331	STD332	STD333	STD334	(B)	(A+B)
Titanium minerals*	tonne	1			1	1	1	I.	1	13862094	1	13862094	13862094 13862094
Tungsten Ore	tonne	ı			1	ı	1	15361152	11805499	172921		9338246 36677818 36677818	36677818
Contained WO ₃	tonne	ı				ı	,	2915	1775	142	1403	6235	6235
Vanadium Ore Metal	tonne tonne					500000 700	4000000 5600			14884430 43197.55		19384430 49497.55	19384430 49497.55
Vermiculite	tonne					69050	64500		1562	66658	I	201770	201770

* Resources as per Department of Atomic Energy are provided in the respective Mineral Reviews.

Agency/	Location	Ma	apping	Dr	illing	Sampling	Remarks
Mineral/ District		Scale	Area	No. of	Metreage		Reserves/Resources estimated
GSI Diamond Raichur	Parets of Raichur						Reconnaissance stage investigation (G-4) was taken up to locat kimberlites in the area based of the previous finds of kimberlite (Raichur Kimberlite Field). Th area is a part of the Archear granite-greenstone terrain of th Eastern Dharwar Craton (EDC exposing the metavolcanic and associated metasedimentary rock of the Eastern Greenstone belt (Kushtagi, Hutti and Deodurg Raichur schist belts), Migmatiti gneisses of Peninsular Gneiss- II syenite, pink/grey granite and porphyritic and homophanou granite and granodiorite. A1 these rock types have beet traversed by quartz veins, gabbr and dolerite dykes. This Archeat terrain is covered in the norther part by flood basalts of Deccat Trap. Geochemical anomal brought out near Paidoddi is du to the presence of meta ultramafic enclave in the areat Calcrete development wa observed at 1 km west of Govindoddi in the vicinity of very small exposure of ultramafit body. Dolerite and gabbro dyke have been traced. Suspected Cr Diopside grains collected from stream sediment samples ar submitted for EPMA analysis The work has been completed.
Gold	Ajjanahalli	-	-	-	-	-	(G-3) for gold was taken up in

Table - 2: Details of Exploration Activities in Karnataka, 2011-12

on (G-3) for gold was taken up in the Ajjanahalli sector of Chitradurga schist, where earlier investigation identified mineralisation in BIF and adjacent country rocks. The boreholes were drilled to intersect the mineralised BIF bands to study the subsurface nature, behaviour, depth persistence and gold content of the auriferous Banded Iron Formations.

Tumkur

Block-D

Agency/ Mineral/	Location	Ma	pping	Dr	illing	Sampling	Remarks Reserves/Resources estimated
District		Scale	Area	No. of	Metreage		Reserves/Resources estimated
GSI Gold Tumkur	Ajjanahalli block-D	-	-	-	-	-	The borehole BH-20 intersected mineralised zone VII and VIII in BIF which is highly sheared, with quartz-carbonate veins/veinlets having plenty of sulphides such as pyrite, pyrrhotite and arsenopyrite and minor chalcopyrite. Borehole BH-21 22 & 23 intersected mineralised zone III and IV in BIF. The BIF is highly sheared, with quartz- carbonate veins/veinlets, having sulphides such as pyrite pyrrhotite and arsenopyrite Correlation of mineralised zones intersected in different boreholes is in progress.
-do- Tumkur	Ajjanahalli block-E		-	-		-	Reconnaissance stage investigation helped in delineating a mineralised zone for a strike length of 900 m within BIF band. The main lithounits in block E are metabasalt argillite, BIF and various generations of quartz vein and two later basic intrusives. A major old working is noticed at the western limb of the band. The old working is confined to the BIF band extending for a length of 25 m along the strike direction with a width of 4 m. The BIF band is sheared, brecciated and limonitised The wall rock alteration of metabasalt is observed at the contact of BIF. The BIF is sheared, highly limonitised with quartz veins/veinlets, Severa quartz veins are noticed in metabasalt. The work has been completed.
-do- Tumkur	Ajjanahalli block-G	-	-		-	-	Reconnaissance stage (G-4) investigation was carried ou for assessment of gold minera- lisation. The major litho-units noticed in the area are meta-basalt BIF and argillite. Various generations of quartz vein are cross cutting the BIF as well as meta-

basalt. Thin, impersisent Ferrodolomite bands (50 cm) are mapped

Table - 2 (Contd.)

Agency/ Mineral/	Location	Ma	pping	Dr	lling	Sampling	Sampling	Remarks Reserves/Resources estimated
District		Scale	Area	No. of	Metreage		Keseives/Kesources estimated	
GSI Gold Tumkur	Ajjanahalli block-G	-	-	-	-	-	at the contact of meta-basalt and BIF band at places. An old working is noticed at one of the BIF band. The wall rock alteration is observed at the contact of BIF with both lithounits. The BIF is sheared, highly limonitised with quartz veins/veinlets. Three new BIF bands were established named as band VIII, IX and X in the western part of the area. The work has been completed.	
-do- Chitradurga & Tukmur	Adivala Obalapura, Mavinamadu block		-	-	-	-	Reconnaissance stage investigation (G-4) was taken up, to assess the auriferous nature and to locate possible gold mineralisation in the eastern shear of the Chitradurga Schist belt. These blocks are situated 500 m to 1 km south east of Hiriyur to south of Mavinamadu, comprising the Hiriyur Fonnation belonging to Chitradurga Group of Dharwar Supergroup. The present area of investigation is a part of the Ajjanahalli folded BIF band sequence and falls within the minor shear very close to the eastern shear in the eastern margin of the central part of the Chitradurga schist belt. The main rock types are massive, schistose pyroclastic vesicular and carbonate metabasalt BIF (5-7 BIF bands) and metagreywacke, argillite with younger basic and acide intrusive. Based on the chemicar analytical results of bedrock and trench samples and surface indications delineation of mineralised zones in the area was in progress. The work has been completed.	
							eeen eempieteu.	

Agency/ Mineral/	Location	Ma	pping	Dr	illing	Sampling	Remarks
District		Scale	Area	No. of	Metreage		Reserves/Resources estimated
GSI Gold Shimoga	Bharapura & Hosahalli	-	-	_	-	-	Reconnaissance stage investigation (G-4) for gold mineralisation has been carried out during FS 2010-12 The Shimoga schist belt is one of the important schist belts in Western Dharwar Craton where earlier investigation in southerr part of the Shimoga schist bel led to identification of prospects in Jalagaragundi, Siddarahalli Honnahatti and Singanamane areas The major rock types noticed during the large scale mapping are PGC, metabasalt, fuchsite quartzite, quartz-chlorite schist talc-chlorite schist, quartzite polymictic conglomerate and basic dykes. Evidences of mineralisation are in the form of silicification sulphide leaching and dissemination of sulphides within quartz-chlorite schist and talc-chlorite schist in the form of pyrite, pyrrhotite and arsenopyrite. The shear zone in south west of Bhairapura was traced further north. The investigation has been completed.
GSI Iron ore Chitradurga	Kenkeri, Melanahalli, Guruvapura, Kempanahalli Dasudi, Kandikere blocks.	-	-	-		-	Reconnaissance stage investigation (G-4) was initiated during FS 2010-12 in selected freehold areas for preliminary assessment of the iron ore occurrences in parts o Chitradurga schist belt as a follow up of decisions taken in State Geological Programming Board o Karnataka and Central Geologica Programming Board meetings Large scale mapping in Melanahall and Guruvapura blocks has brough out three bands of BIF. The analytical results of trench samples (value of 55.01% Fe) obtained nea a fold closure indicated a structura control for the ore mineralisation Bed rock samples have analysed values ranging from 20.11 to 46.91 wt % Fe. The width o BIF band at Purada Mata hill range from 10 to 15 m and at south o dolomitic stone hill is 35 m. In Kandikere block a 15 to 20 m wide band of BHQ has been delineated The work has been completed.

(Contd.)

Agency/	Location	Ma	pping	Dr	illing	Sampling	Remarks
Mineral/ District		Scale	Area	No. of	Metreage		Reserves/Resources estimated
GSI Limestone Bagalkot	Jalikatti, Lokapur and adjoining areas	-		-		-	Reconnaissance (G-4) stage investigation has been taken to assess for SMS grade limestone for alkali- content. The limestone members of Yendigiri and Muddapur Formations are the main bands mined in the area. The width of the limestone unit of Yendigiri Formation (Chikshelliker member) varies from 100-400 m and could be more. The limestone unit of Muddapur Formation (Pettur member) is 15 to 80 m wide Evidences of stromatolites have beer noted in Petlur limestone near Venkatapur, Nagnapur (Jalikatti) of Muddapur Formation and Chitrabanukot dolomite (Varchagal) of Yargatti Formation. Five zones of stromatolites were noted in Chitrabanukot dolomite, near Varchagal. Preliminary assessment indicates that the dark grey limestone belonging to Yendigere Formation tentatively conforms to the specifications of flux and SMS grade limestone. It is fine grained and massive unit of considerable width However the chemical analysis has to be obtained for confirmation. The lower part of the two limestone units (Yendigere and Muddapur) are variegated and may not be suitable as flux and SMS grade. It has high SiO and grades to shaly limestone The work is under progress to categorize the limestone based on chemical analysis results. The work has beer completed.
GSI PGE	Nuggihalli	-	-	-	-	-	Reconnaissance (G-4) stage investigation for PGE has been taken up during FS 2010-12. The area comprises granitic gneiss amphibolite and meta ultramafites "C mafites. Major ultramafics observed are serpentinite, meta pyroxenite meta gabbro, anorthositic gabbro gabbroic anorthosite and meta anorthosite. The serpentinites migh be the altered product of dunite and peridotites. In the mine pits fo chromite the igneous layerings are well manifested at various places like Tagadur, Ranganatha Betta and Bakhtarahalli. Chromites are seen in various forms like veins, lenses, pods

Agency/	Location	Ma	pping	Dr	illing	Sampling	Remarks
Mineral/ District		Scale	Area	No. of	Metreage		Reserves/Resources estimated
							laminated and also as disseminated Chromitite layers are recorded within massive serpentinite in Tagadur mines. The massive chromitites are under intense mining by Mysore Mineral Limited of Karnataka. Titaniferous-vanadiferous magnetite (TVM) bands are noticed within the mafic portions of the layerings and are abundantly seen near Tagadur and Ranganatha Gudda. Sulphide mineralisation is observed only on the titano-magnetite bands and amphibolites. In the TVM bands sulphide is seen in the form of bluish, brownish, greenish and yellowish stains. In amphibolites fine disseminations of pyrite is seen rarely Stringers of chalcopyrite are also seen near Ranganatha Gudda. The work has been completed.
DMG Limestone Gulbarga	Jewargi	1:2,500	-	03	372.0	-	The object of exploration is to assess the depth continuity and quality of limestone and are well exposed oriental beds with tight bedding planes. Limestones are generally massive, grey to light grey in colour Resources were not estimated.
-do- Tumkur	Melanahally	-	-	01	65.50	-	The object of exploration is to assess the depth continuity and quality of limestone. Limesatone and dolomite are highly distrubed zone with dykes instructions. The general trend is NNW - SSE with dip either side angles arranging 60° vertical. Resources were not estimated.
Ornamental Stone Chikkaballapur	Bagepalli	1:50,000	75.0	-	-	-	The object of exploration is to assess the rocks suitable for ornamental purpose. Geologically the area consists of Granite gneiss, granite, amphibolites, horneblend schists and dolerite dykes. Gneisses forms a rolling topography and exposed in the form of isolated boulders and sheet rocks. Enclaves of amphibolites and horneblend schists are common as caught of patches within in gneisses and granites. The important villages where ornamental variety of rocks located around North of Honara- impalli, Poklamakallapalli, Kottur and Sadapalli. Further work is under progress.

(Contd.)

Agency/ Mineral/	Location	Ma	apping	Dr	illing	Sampling	Remarks Reserves/Resources estimated
District		Scale	Area	No. of	Metreage		Keserves/Kesources estimated
Hutti Gold Mine Gold Raichur	Vill : Hutti	1:400	2831 (UG)	-	7449	9883	A total of about 15.36 million tonnes gold resources were estimated. Out of which 9.51 million tonnes resources of gold with 5.53 g/t Au & 5.85 million tonnes of gold resources with 4.83 g/t Au was estimated.
-do-	Hira Buddinni	1:400	136.10	-	-	1164	Mineralisation occurs along with sheared contact of acidic & basic volcanic rocks which is manifested by chloritised brecciated rocks with quartz carbonate veins, veinlets with sulphides. Mineralisation was found over a strike length of 600 m. About 0.78 million tonnes of gold resources were estimated with 3.99 g/t Au.
-do-	Uti	1:400	-	-	-	1004	The mineralisation zone was characterised by significant sulphi-disation and biotisation. A total of about 2.18 million tonnes of gold resources were estimated Out of which 0.31 million tonnes 1.73 million tonnes and 0.14 million tonnes with 2.50 g/t Au 2.64 g/t Au, and 2.91 g/t Au respectively.

Production

The value of mineral production in Karnataka at **₹** 4,467 crore in 2011-12 decreased by about 52% as compared to the previous year. It was mainly due to decrease in the production of iron ore by 66% (owing to suspension of mining activities by court order) and manganese ore by 67% as compared to the previous year. Iron ore, gold, limestone and manganese ore being the important minerals produced in the State together accounted for 85% of the total value of mineral production during the year. Karnataka was the sole producer of felsite and the leading producer of gold with a share of 99%; second largest producer of limeshell (29%), shale (24%) and dunite (10%) and it was third largest producer of magnesite (4%) in the country. Among the minerals, production of dunite increased by 95% and that of shale by 45%, dolomite by 24%, laterite by 15% and limestone by 9% during 2011-12. Whereas the production of gold and quartzite decreased by 9% each, limeshell 16%, magnesite 30% and felsite 39% as compare to that of the previous year (Table- 3).

The production value of minor minerals was estimated at ₹ 646 crore for the year 2011-12.

The number of reporting mines in Karnataka was 185 in 2011-12 as against 251 in the previous year.

The index of mineral production in Karnataka (base 2004-05=100) was 43.00 in 2011-12 as compared to 101.69 in the previous year.

Table – 3 : Mineral Production in Karnataka, 2009-10 to 2011-12(Excluding Atomic Minerals)

(Value in ₹ '000)

			2009-1	0		2010-1	1		2011-12	(P)
Mineral	Unit	No. of mines	Qty	Value	No. o mines		Value	No. of mines	Qty	Value
All Minerals		233		60708085	251		92997859	185		44674235
Bauxite	t	2	123316	32748	2	64643	11348	1	83019	20157
Chromite	t	3	6483	30856	3	8540	33223	2	9827	40336
Gold Ore	t	-	512454	-	-	736904	-	-	484438	-
Gold	kg	3	2070	3404563	3	2385	4317060	3	2181	5467505
Iron Ore	'000t	93	43163	48811665	98	38983	79098120	55	13189	29821352
Manganese C	Dret	19	301163	611165	21	413287	929734	19	136072	297422
Silver*	kg	-	230	5770	-	221	8627	-	200	11374
Dolomite	t	15	385041	55044	17	442941	71522	17	548694	90517
Dunite	t	1	37346	8830	1	1971	360	1	3846	513
Felspar	t	1	3100	651	2	1034	285	2	-	-
Fireclay	t	-	5523	2949	2	15330	4431	1	7684	2256
Felsite	t	6	3049	2464	6	1670	2420	3	1018	1854
Kaolin	t	3	19543	12015	3	9785	8796	1	3214	7697
Laterite	t	3	203378	69711	3	130300	17119	1	149600	21111
Limestone	'000t	56	17959	1718707	66	18595	1933439	66	20228	2340902
Limeshell	t	4	39880	25406	3	11578	8865	2	9689	7543
Magnesite	t	2	6437	13591	3	11820	26839	3	8331	24120
Ochre	t	-	4156	4862	1	34157	29063	-	1126	5067
Quartz	t	-	275	108	-	10	3	1	-	-
Quartzite	t	2	7437	2054	1	11450	3607	1	10434	2902
Silica Sand	t	20	109468	15206	16	43988	6384	6	33937	8469
Shale	t	-	936636	34304	-	559356	25710	-	809926	42234
Minor Minerals@		-	-	5845416	-	-	6460904	-	-	6460904

Note: The number of mines excludes minor minerals.

* Recovered at Raichur and Tumkur during refining of gold.

@ Figures for earlier years have been repeated as estimates because of non-receipt of data.

Mineral-based Industry

The important large and medium-scale mineral-based industries in organised sector in the State are given in Table - 4.

Table – 4 : Principal Mineral-based

Industries in Karnataka

Industry/plant	Capacity
	('000 tpy)
Abrasives	
Grindwell Norton Ltd, Bengaluru.	NA
Sri Sadguru Abrasives Pvt. Ltd, Mache, Dist. Belgaum.	24 (t)
Alumina	
Hindalco Industries Ltd, Belgaum.	350 (alumina)
13	38 (spl. alumina)
Asbestos Products	
Ramco Industries Ltd, Karur, Dharwad.	NA
Southern Asbestos Ltd, Karur, Dist. Dharwad	I. NA
Cement	
ACC Ltd, Wadi, Dist. Gulbarga.	5950
Bagalkot Cement Industries Ltd, Bagalkot.	297
CCI Ltd, Kurkunta, Dist. Gulbarga.	198
HMP Cements Ltd, Shahabad, Dist. Gulbarga	. 476
Kanoria Industries, Bagalkot.	330
Heidenberg Cement India Ltd,	570
(Formerly Mysore Cements Ltd)	
Ammasandra, Dist. Tumkur.	
Raj Shree Cement, Malkhed, Dist. Gulbarga.	3242
Siddaganga Cement Pvt Ltd,	9
Sadarahalli, Dist. Tumkur.	
	(Contd.

Table - 4 (Contd.)

Industry/plant	Capacity ('000 tpy)
Vasvadatta Cement, Sedam, Dist. Gulba	arga. 8565
Zawar Cement (P) Ltd,	495
Shahabad, Dist. Gulbarga.	
Ceramic	
Ceramic Products Ltd, Khanapur, Dist.	Belgaum. 5
H&R Johnson (India) Ltd, Hubli.	47.72
Murudeshwar Ceramics Ltd, Dharwad.	115
The Mysore Spongware Pipes Potterie	s Ltd, 6
Solandavanahalli, Bengaluru.	
Chemical	
Solaris Chem Tech Industries Ltd,	59.4
Bhinga, Dist. Uttara Kannada.	(caustic soda)
	52.3 (Cl)
	133.7 (HCl)
	24.0 (H ₃ PO ₄)
Fertilizer Mangalore Chemical & Fertilizers Ltd,	380 (urea)
Panambur, Dist. Dakshina Kannada.	260 (DAP)
	, , , , , , , , , , , , , , , , , , ,
Iron & Steel	
JSW Steel Ltd,	4200 (pellets)
Vijayanagar, Dist. Bellary.	720 (pig iron)
	2000 (steel)
(6800(crude/liquid steel)
Visvesvaraya Iron & Steel Ltd,	205 (pig iron)
Bhadravati, Dist. Shimoga.	144 (saleable steel)
	118(crude/liquid steel)
	4.8 (refractory bricks)
Sunvik Steels Pvt. Ltd,	60 (sponge iron)
Jodidevarahally, Dist. Tumkur	60 (TMT bar).
Pellets	
KIOCL, Mangalore.	4000 (pellets)
	6700 (conc.)
	228 (pig iron)
	(Contd

Table - 4 (Contd.)

Table - 4 (Concld.)

Industry/plant	Capacity ('000 tpy)	Industry/plant	Capacity ('000 tpy)
Pig Iron		Hospet Ispat Pvt. Ltd,	60
Uni-Metal Ispat Ltd, Bellary.	75	Allanagar Bagnal Road, Dist. Koppal.	
Kalyani Ferrous Ind. Ltd, Koppal.	120	Hothur Ispat Pvt. Ltd, Veniveerpur, Dist. Bellary.	60
Kirloskar Ferrous Industries Ltd,	240	KMMI Steel Pvt. Ltd, Yerabanahally,	120
Bevinahalli, Dist. Koppal.		Dist. Bellary.	
KIOCL Ltd, Mangalore.	227	Mastek Steels Pvt. Ltd, Halakundi, Dist. Bellary.	105
Sponge Iron	70	Noble Distillaries & Powers Ltd,	72
Agrawal Sponge & Energy (P) Ltd, Kuduthini, Dist. Bellary.	72	Sirivar, Dist. Bellary.	
Balakundi Premium Steels Pvt. Ltd, Halakundi, Dist. Bellary.	34	PGM Ferro Steel Pvt. Ltd, Hariganadani, Dist. Bellary.	60
y-		Popuri Steels Ltd, Halakundi,	
Bellary Ispat (P) Ltd, Halakundi	33	Dist. Bellary.	30
Dist. Bellary.		Rayon Steel Pvt Ltd, Veniverapur,	60
Bellary Steel & Alloys Ltd, Bellary.	60	Dist. Bellary.	
		Rengineni Steel Pvt. Ltd, Halakundi,	25
Benaka Sponge Iron Pvt. Ltd, Belagal, Dist. Bellary.	60	Dist. Bellary.	
Dist. Denary.		Shree Venkteshwara Sponge & Power Ltd,	30
Dhruvdesh Metasteel Pvt. Ltd,	60	Halakundi, Dist. Bellary.	
Hirebaganal, Dist. Koppal.		Yashshvi Steel & Alloys Ltd, Halakundi,	30
Divya Jyoti Steel Ltd, Taranagar, Dist. Bellary.	30	Dist. Bellary.	
		Ferro Alloys	
Embitee Iron & Steel Pvt. Ltd, Bellary.	60	Dandeli Steel & Ferro Alloys Ltd, Dandeli.	6
Gayatri Metals Pvt Ltd, Belagal, Dist. Bellary.	30		
		Yashashvi Steels & Alloys Pvt Ltd,	30
Janki Corp. Ltd, Sidiginamola, Dist. Bellary.	180	Nalakundi, Dist. Bellary.	
Haryana Steel and Power, Shanthigrama,	35	S.R. Chemicals & Ferro Alloys Ltd,	0.3
Dist. Hassan.	55	Honaga, Dist. Belgaum.	
		Thermit Alloys Pvt. Ltd,	
Hare Krishna Metallics Pvt Ltd, Hire Baganal, Dist. Koppal.	75	Shimoga.	1.2
Dist. Koppai.		Petroleum Refinery	
	(Contd.)	MRPL, Mangalore.	11820