STATE REVIEWS

Indian Minerals Yearbook 2020

(Part- I)

59th Edition

STATE REVIEWS (Uttarakhand)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

February, 2023

UTTARAKHAND

Mineral Resources

Important minerals that are found to occur in the State are high-grade **limestone** in Almora, Bageshwar, Dehradun, Nainital, Pauri-Garhwal, Pithoragarh & Tehri-Garhwal districts; **magnesite** & **steatite** in Almora, Bageshwar, Chamoli & Pithoragarh districts; and **tungsten** in Almora district.

Other minerals that occur in the State are: **asbestos** in Chamoli district; **barytes** & **marble** in Dehradun district; **copper** in Almora, Dehradun & Pithoragarh districts; **dolomite** in Dehradun, Nainital & Tehri-Garhwal districts; **graphite** in Almora district; **gypsum** in Dehradun, Pauri-Garhwal & Tehri-Garhwal districts; **lead-zinc** & **silver** in Dehradun & Pithoragarh districts; and **rock phosphate** in Dehradun & Tehri-Garhwal districts (Table - 1).

Exploration and Development

GSI carried out exploration for base metal in District Rudraprayag in the State of Uttarakhand during 2019-20. Details of exploration are furnished in Table-2.

Production

Magnesite was the only important mineral item produced in Uttarakhand during 2019-20. The value of production of minor minerals was estimated at ₹ 64 crore for the year 2019-20 (Table-3).

Mineral-based Industry

The present status of each Mineral-based Industry is not readily available. However, the important medium and large-scale mineral-based industries in the Organised Sector in the State are furnished in Table - 4.

Agency/ Mineral/	Location Area/	Map	ping	Dri	lling	C 1'			
District	Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated		
GSI Base Metal									
Pithoragarh	Ajera-Pasma area	1:12500	50.0	-	-	-	Reconnaissance survey (G4) for Bas metal mineralisation in this area ha out by LSM. The field work included LSM of 50 sq km area on 1: 1250 scale along with sample collection The rock types of the mapped are could be broadly classified into tw formations, namely, the Asko crystallines and Berinag Formation. It field, no potential zone o mineralisation was found but based or replacement of actinolite by biotite in petrological studies of mafic tuff, a 300 m long and 30 m wide alteration zon was inferred. To identify possibl extension of Askot deposit based or adsorption of metal ions in clai minerals,91 Soil/Slope Wash sample were also collected from the easter part of the area. The received analysi of BRS samples does not give an encouraging values for potentiality o base metal mineralisation in the area		
Rudraprayag	Bamera-Gwar- Dhanpur area	1:12500	50.0	-			Reconnaissance survey (G4) for Bas- metal mineralisation in this area wa carried out by LSM,which involved an area of 50 sq km on 1:12500 scale Geologically, the study area wa found to be constituted by the rocks of Berinag and Lamer formations of the Garhwal Group of Mesoproterozoic Age. The sulphide mineralisation was also		

Agency/ Mineral/	Location Area/	Mapping		Dri	lling	Somuling	Remarks	
District	Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Reserves/Resources estimated	
							observed in Dobri area within dolomite. An area of about 1 ss km between Gwanagarh peal (east), Dhuya (west), Dhanpu (north) and Dobri (south), has been identified as the most prospective area from the mineralisation poin of view. Based on the geologica mapping, the control or mineralisation was established which is remobilisation and concentration of mineralisation along F2 axial planes.	
	Mo, Rare Metal	1.25000					Pasannaissanaa survay (G4) fa	
Uttarkashi	Gangotri Granite	1:25000		-			Reconnaissance survey (G4) fo REE, Sn, W, Mo, Rare Metal mineralisation in this area wa carried out by mapping Traverso mapping was carried out fo 85-line km on 1:25000 scale in the study area. Different phases variants of granite bodies were delineated by means of moda variation. Two potential minera blocks have been identified. Firs block is Nelong-Naga-Jadhang Nilapani block which is intensely hydrothermally altered granite which host pyrite, chalcopyrite galena with molybdenite flakes Contact of altered granite with adjacent quartzite of Tethyan sequence was sheared and quartzite was brecciated along the contac with sulphide mineralisation Another block is Harsil-Mukhaba Jhala block which define occurrence of highly fertile rare metal pegmatite complex. These pegmatites were spatially zoned and extended over 8-10 km from source granite and was observed to be have been intruded into the garnetifer ous mica schist of Tethyan sequence. Both parent granite and pegmatites contain rare meta minerals, such as, beryl, cassiterite ferrocolumbite and ferrotapiolite Geochemically, the biotiti muscovite granite and leucogranit are peraluminous in composition The occurrences of complex crys tals of cassiterite, ferrocolumbite ferrotapiolite with beryl and trace of pollucite within the Jhala peg matite/ layered aplite pegmatite in dicated volatile rich, geochemically evolved peraluminous melt by pro	

STATE REVIEWS

			Reserves	ves					Remaining	Remaining Resources				Total
Mineral	Unit	Proved	Prot	Probable	Total	Feasibility	Pre-fe	Pre-feasibility	Measured	Indicated		Reconnaissance Total	ce Total	Resources
			STD121	STD122	(Y)	S1D211	STD221	STD222	S1D331	S1D332	S1D333	S1D334	(B)	(A+B)
Asbestos [#]	tonne		·	'	1		1		I	311			311	311
$Barytes^{\#}$	tonne	'			'			ı			25000		25000	25000
Copper	000								0610	006	077			
Ore Matal	1000 tonnes			ı	ı		•	'	51/0	060 1 11	000 5 15		4220 60.04	4220 60.04
Dolomite [#]	'000 tonnes	1570	594		2165	36	721	371	1946	981	199834		203888	206053
Graphite	tonne					ı	,	'	10700		ı	ı	10700	10700
${ m Gypsum}^{\#}$	'000 tonnes	S	I	ı	ı	,	ı	35	I	ı	2012	ı	2047	2047
Lead-Zinc Ore	'000 tonnes	۱ بر	ı	ı	I	ı		,	3170	1790	660	ı	5620	5620
Lead metal	'000 tonnes		'	'	'	ı	,	'	138.85	34.25	9.5	,	182.60	182.60
Zinc metal	'000 tonnes				'		ı	I	151.21	87.99	27.63		266.83	266.83
Limestone	'000 tonnes	S	ı	'		5035	91872	60429	29486	164879	1191059		1542760	1542760
Magnesite	'000 tonnes	s 3104	'	4206	7310	1023	602	31534	58902	58756	73287	'	224103	231413
$Marble^{\#\#}$	'000 tonnes	-	•	'	'	ı	·	'	'	ı	6000	·	6000	6000
Rock														
Phosphate Silver	tonne	ı	ı	ı	ı	3063503		1734370	2760000	I	16620513	- 2	24178386 2	24178386
Ore	tonne	'	ı		'			I	1600000	1400000	390000		3390000	3390000
Metal	tonne	ı	ı	I	ı	ı		ı	134	4.2	0.39	ı	138.59	138.59
Talc-Steatite-														
$Soapstone^{\#}$	'000 tonnes	s 16896	4521	2698	24115	5831	5353	8982	978	2372	24388	5860	53765	77881
Tungsten Ore	tonne	'		I		ı	ı	ı	ı	138000	I	520000	658000	658000
Contained														
WO_3	tonne	·	ı	ı	,	·		·		25	ı	680	705	705
i														

11-4

Table -1: Reserves/Resources of Minerals as on 1.4.2015: Uttarakhand

Figures rounded off. # Declared as Minor Mineral vide Gazette Notification dated 10.02.2015. ##: Minor Minerals before Gazette Notification dated 10.02.2015.

STATE REVIEWS

STATE REVIEWS

Table-3 : Mineral Production in Uttarakhand, 2017-18 to 2019-20 (Excluding Atomic Minerals)

(Value in ₹ '000)

			2017-18			2018-19)	2	2019-20	(P)
Mineral	Unit	No. of mines	Qty	Value	No. of mines	Qty	Value	No. of mines	Qty	Value
All Minerals		3		742564	3		789931	3		741479
Magnesite	t	3	64206	106197	3	87123	153564	3	44210	105112
Minor Minerals @		-	-	636367	-	-	636367	-	-	636367

Note: The number of mines excludes Minor minerals.

(a) Figures for earlier years have been repeated as estimates because of non-receipt of data.

Industry/plant	Capacity ('000 tpy)
Abrasives	
Tirupati Microns, Bhagwantpur, Kashipur, Udham Singh Nagar	0.15 (Abrasives Powder)
Cement	
The KCP Ltd, Distt Haridwar (G)	1100
Ambuja Cement, Roorkee, Distt Haridwar (G)	1000
Shree Cement, Roorkee, Distt Haridwar (G)	1800
Shree Cement, Laskar Grinding unit Akbarpur-OUD, Laskar	1800
DBM	
Almora Magnesite Ltd, Village-Matela Distt. Bageshwar	24 (DBM, calcined & semi calcined magnesite)
Minerals & Refractories. Haldwani Pithoragarh	3 (DBM)
Ramesh Chandra Binjola, Kumaon Refractories, Narsingh Talla, Haldwani	8(DBM, calcined magnesite)
Glass	
Hindustan National Glass & Industries Ltd, Rishikesh	4395 TPD

Table – 4: Principal Mineral-based Industries

G: Grinding Unit