STATE REVIEWS

Indian Minerals Yearbook 2019

(Part- I)

58th Edition

STATE REVIEWS (Madhya Pradesh)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

May, 2021

MADHYA PRADESH

Mineral Resources

Madhya Pradesh is the only diamond producing State in the country and is the leading producer of copper conc., diaspore, pyrophyllite, manganese ore, limestone and clay (others). The State hosts the country's 90% diamond, 74% diaspore, 55% laterite, 48% pyrophyllite, 41% molybdenum, 27% dolomite, 19% copper ore, 18% fireclay, 12% manganese and 8% rock phosphate ore resources.

Important mineral occurrences in the State are: bauxite in Balaghat, Guna, Jabalpur, Katni, Mandla, Rewa, Satna, Shahdol, Shivpuri, Sidhi & Vidisha districts; calcite in Barwani, Jhabua, Khandwa & Khargone districts; china clay in Betul, Chhatarpur, Chhindwara, Gwalior, Hoshangabad, Jabalpur, Khargone, Narsinghpur, Raisen, Satna, Shahdol & Sidhi districts; copper in Balaghat, Betul & Jabalpur districts; coal in Betul, Shahdol & Sidhi districts; diamond in Panna district; diaspore & pyrophyllite in Chhatarpur, Shivpuri & Tikamgarh districts; dolomite in Balaghat, Chhindwara, Damoh, Dewas, Harda, Hoshangabad, Jabalpur, Jhabua, Katni, Mandla, Narsinghpur, Sagar & Seoni districts; fireclay in Betul, Chhindwara, Jabalpur, Katni, Narsinghpur, Panna, Sagar, Shahdol & Sidhi districts; iron ore (haematite) in Betul, Gwalior, Jabalpur & Katni districts; limestone in Balaghat, Chhindwara, Damoh, Dhar, Hoshangabad, Jabalpur, Jhabua, Khargone, Katni, Mandsaur, Morena, Narsinghpur, Neemach, Rewa, Sagar, Satna, Sehore, Shahdol & Sidhi districts; manganese ore in Balaghat and Jhabua districts; ochre in Dhar, Gwalior, Jabalpur, Katni, Mandla, Rewa, Satna, Shahdol & Umaria districts; pyrophyllite in Chhatarpur, Sagar, Shivpuri & Tikamgarh districts; quartz/silica sand in Balaghat, Dewas, Dhar, Jabalpur, Khandwa, Khargone, Morena, Rewa & Shahdol districts; talc/steatite/soapstone in Dhar, Jabalpur, Jhabua, Katni, Narsinghpur & Sagar districts and vermiculite in Jhabua district.

Other minerals that occur in the State are: barytes in Dewas, Dhar, Shivpuri, Sidhi & Tikamgarh districts; calcareous shales (used in slate pencil) in Mandsaur district; felspar in Jabalpur & Shahdol districts; fuller's earth in Mandla district; gold in Jabalpur & Sidhi districts; granite in Betul, Chhatarpur, Chhindwara, Datia, Jhabua, Panna, Seoni & Shivpuri districts; graphite in Betul & Sidhi districts; gypsum in Shahdol district; lead-zinc in Betul district; molybdenum in Balaghat district; potash in Panna district; quartzite in Sehore district; rock phosphate in Chhatarpur, Jhabua & Sagar districts; and sillimanite in Sidhi district (Table - 1). The reserves/resources of coal along with various coalfields in Madhya Pradesh are furnished in Table - 2.

Exploration & Development

The details of exploration activities conducted by GSI and other various agencies during 2018-19 are furnished in Table - 3.

Production

Madhya Pradesh was the sole producer of diamond. Apart from this, coal, bauxite, copper ore & concentate, iron ore, manganese ore, limestone and phosphorite are the principle mineral produced in the State.

The value of minor mineral's production is estimated as ` 5,646 crore for the year 2018-19.

There were 213 reporting mines in 2018-19 in case of MCDR minerals (Table-4).

Mineral-based Industry

The present status of each Mineral-based Industry is not readily available. However, the important large and medium-scale mineral-based industries in the Organised Sector in the State are furnished in Table-5.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Reserves	S					Remaining	Remaining Resources				E
STD121 STD21 STD221 STD221 STD221 STD221 STD221 STD221 STD221 STD231 STD32 STD31 STD335 S1337 S1016 S1348 S1356 S1341 S1335 S1331 S1016 S1348 S1356 S1341 S1331 S1131 S11311 S11311 S1131 S11311			roved	Probabl	٥		easibility	Pre-feas	ibility	Measured cTD331	Indicated STD 337	Inferred STD333	Reconnaissa stD334	ince Total	Total resources
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ż			TD122		117710	STD221	STD222		7 CC 7 T C				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	arytes	tonne	'	'	'		'	18500	4472		35000	233940		291912	291912
w^{+} 000 (nms 337 474 902 1733 2887 406 3774 621 4115 12017 20115 212899 2312 000 (nms 81739 $ 11844$ 20353 189.66 4068 1415 12017 $ 20115$ 21132 213239 231234 21132 21121 21124 21124601 21232 211414	auxite	'000 tonnes	11979		8299	23591		15084	6013	11061	54484	50590	ı	149797	173388
	alcite [#]	tonne	'	I	5175	5175		35077	160421	20250	180226	358636	97476	1067412	1072587
	hina clay [#]	'000 tonnes	357	474	902	1733		406	3774	621	415	12017	ı	20115	21848
v ono contact is 1470 v	opper		111050		00201	151570				01570	0 2 2			1 28800	
add 000 tonnes 1887.93 - 1887.93 - 1382.13 341 one tonne 2380710 341047 8567.5 - 1382.13 341 one tonne 2380710 341047 8573.5 5561 2764.94 460808 13696 19972 81067 46668 2025365 7561 me* 000 tonnes 2380710 341047 8573.5 3330 29222 1385434 141799 2025365 7561 ay* 000 tonnes 390 4192 302 7603 2139 7164 4975 1551 2129 10077 100 117200 1172 starth tonne 2	Ore	000 tonnes	141950	'	08021	154550				09615	000	19389		128899	28342
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Metal	'000 tonnes	1887.93	'	148.44	2036.37	189.66	ı	ı	320.84	4.13	867.5	·	1382.13	3418.
once 1380710 341047 281067 46088 13696 109792 810667 46068 202365 5561 mite* 000 tonnes 23765 1077 18714 5257 33685 94599 102877 33030 295725 31647 2005 275839 2013 2011 ay* 000 tonnes 390 4192 3020 7603 2139 7164 4975 1551 2129 100977 100 11936 1260 ay* 000 tonnes 390 4192 3020 7603 2139 7164 4975 1551 2129 100977 100 11936 1260 as Eurlh* tonne - - - - - - - 117200 - 3559 3213 imary tonne - - - - - - - - - - 35693 3213 imary tonne -	iamond	carat	959500	,	159	959659	I	I	I	104118	,	27645359	ı	27749477	28709136
	hiaspore#		2380710	341047 2	2814601	5536358	96241	488094	460808	13696	109792	810667	46068	2025365	7561723
art^{*} tonne $=$ <t< td=""><td>olomite[#]</td><td>'000 tonnes</td><td>23765</td><td>10078</td><td>18714</td><td>52557</td><td></td><td>94599</td><td>102857</td><td>33030</td><td>295222</td><td>1584534</td><td>114799</td><td>2258839</td><td>2311395</td></t<>	olomite [#]	'000 tonnes	23765	10078	18714	52557		94599	102857	33030	295222	1584534	114799	2258839	2311395
uy^{*} 000 tonnes390419230276321397164497515512129100977100119361260is Earth*tonne117200-117200117200is Earth*tonne117200117200-117200117200inary)tonne117200-117200117200inary)tonne117200-117200117300inary)tonne841001947000-778800778800inary)tonne84499460778800778800778800inary)tonne844994607788007	elspar [#]	tonne	'	,	'	I	10330	I	6610	I	,	339851	ı	356791	356791
	ireclay#	'000 tonnes	390	4192	3020	7603		7164	4975	1551	2129	100977	100	119036	126639
	ullers Earth##	tonne	'	'	'	1	'	1		1	'	117200		117200	11720
Indication Indication <thindication< th=""> Indication Indicati</thindication<>	old														
IN)tonne $ -$ <th< td=""><td>Ore</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Ore														
ary)tonne 2.22 2 8.4 tone $000 {\rm cu}$. m $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 160$ $ 8.4$ $000 {\rm cunes}$ $ 69000$ 1993924 19940 $000 {\rm cunes}$ $ 69000$ 736660 573660 $000 {\rm cunes}$ 122 14225 62063 48412 36574 23243 9008 146803 10 267900 3295 $000 {\rm cunes}$ 12534 3355 7917 23807 8715 16311 16077 3189 1519 167527 169678 368336 3921 $000 {\rm cunes}$ 12534 3355 7917 23807 8715 16374 23243 9008 146803 10 $ 69$ $ 69$ $000 {\rm cunes}$ 12534 3355 7917 23807 8715 16977 3189 1519 167527 169678 365324 36336 3921 $000 {\rm cunes}$ $ -$ <td< td=""><td>(Primary)</td><td>tonne</td><td>I</td><td>I</td><td>ı</td><td></td><td>I</td><td>ı</td><td>ı</td><td>I</td><td>5841000</td><td>1947000</td><td>ı</td><td>7788000</td><td>7788000</td></td<>	(Primary)	tonne	I	I	ı		I	ı	ı	I	5841000	1947000	ı	7788000	7788000
Iry)tonne $ -$ <t< td=""><td>Metal</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Metal														
tone '000 cu. m - 160 - 160 - 160 - 193324 193324 19 tonne - - - - - - 345660 2736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 5736660 573 69 - 67 63	(Primary)	tonne		ı	1		I	I	I	·	6.18	2.22	ı	8.4	8.4
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	ranite**														
	Dim. Stone)	'000 cu. m	'	160		160	I	I	I	I	ı	1885924	108000	1993924	199408
	raphite	tonne	'	ı	'	'	I	I	ı	I	ı	3456660	2280000	5736660	573666
title '000 tonnes 44203 3635 14225 62063 48412 3650 36774 23243 9008 146803 10 267900 3 '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3 '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3 '1c '000 tonnes 12534 3350 117 - 1510 4006 5930 3150 14841 Actal '000 tonnes - - - - 26.12 5.13 5.04 - 36.29 Actal '000 tonnes 816293 1093490 545310 419938 256187 498590 566011 830331 4045838 26985754 93.35 ie '000 tonnes 816293 1093490 5455103 419938 256187 498590 566011 830331 4045838 26985754	ypsum [#]	'000 tonnes	ı	ı	ı	I	I	ı	ı	ı	ı	69	ı	69	U
title) '000 tonnes 44203 3635 14225 62063 48412 3650 36774 23243 9008 146803 10 267900 3: '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3: '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3: '000 tonnes 129 117 - 1510 4006 5930 3150 14841 Actal '000 tonnes 26.12 5.13 5.04 - 36.29 Actal '000 tonnes 816293 1093490 545321 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93. 'se Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 - '000 tonnes 4551 4551	ton Ore														
'000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3' nc '000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 detal '000 tonnes - - - 129 117 - 26.12 5.13 5.04 - 36.29 detal '000 tonnes - - - 5.2 4.71 - 14.76 41.93 186.02 101.12 453.74 4 ne '000 tonnes 816293 1093490 5453103 419938 256187 498590 566011 830331 4045838 269859 6886754 93.35 see Ore '000 tonnes 20227 6760 2904 - 2779 6421 325 10481 2015 - 27823 oton tonnes - - - - - - - 27823 - 27823 - - - <td>(Haematite)</td> <td>'000 tonnes</td> <td></td> <td></td> <td>14225</td> <td>62063</td> <td></td> <td>3650</td> <td>36774</td> <td>23243</td> <td>9008</td> <td>146803</td> <td>10</td> <td>267900</td> <td>329963</td>	(Haematite)	'000 tonnes			14225	62063		3650	36774	23243	9008	146803	10	267900	329963
nc '000 tonnes - - 129 117 - 1510 4006 5930 3150 14841 Actal '000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 Actal '000 tonnes - - - - - 36.29 36.29 Actal '000 tonnes - - - - 26.12 5.13 5.04 - 36.29 Actal '000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 4 ne '000 tonnes 816293 1093490 545310 419938 256187 498590 566011 830331 4045838 269859 6886754 93. see Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - -	aterite [#]	'000 tonnes	12534	3355	7917	23807		1631	16077	3189	1519	167527	169678	368336	392143
000 tonnes - - 129 117 - 1510 4006 5930 3150 14841 Actal 000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 Actal 000 tonnes - - - - - 36.29 36.29 Actal 000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 4 ne '000 tonnes 816293 1093490 545312 2455103 419338 256187 498590 566011 830331 4045838 269859 6886754 93. ne '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 - 27823 - - 27823 - 27823 - 27823 - 27823 - 27823 - 27823 - - - 27823 - -	ead-Zinc														
Actal '000 tonnes - - - - - 36.29 Actal '000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 4 Actal '000 tonnes 816293 1093490 545321 2455103 419338 256187 498590 566011 830331 4045838 269859 6886754 93. ne '000 tonnes 210227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 see Ore '000 tonnes 20227 6751 4551 - - - 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - - 27823 - - - 27823 - - - 27823 - - - 27823 - - - 27823 - - - - 27823 - - </td <td>Ore</td> <td>'000 tonnes</td> <td>'</td> <td>'</td> <td></td> <td>I</td> <td>129</td> <td>117</td> <td>ı</td> <td>1510</td> <td>4006</td> <td>5930</td> <td>3150</td> <td>14841</td> <td>1484</td>	Ore	'000 tonnes	'	'		I	129	117	ı	1510	4006	5930	3150	14841	1484
fetal '000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 - ne '000 tonnes 816293 1093490 545312 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 ne '000 tonnes 210227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 se Ore '000 tonnes 20227 6751 4551 - - 2779 6421 325 10481 2015 - 27823 '000 tonnes 20227 6751 4551 - - - - 27823	Lead Metal	'000 tonnes	'	I			I	I	I	26.12	5.13	5.04	ı	36.29	36.29
ne '000 tonnes 816293 1093490 545321 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 se Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes 4551 4551	Zinc Metal	'000 tonnes	'	I	'	'	5.2	4.71	I	114.76	41.93	186.02	101.12	453.74	453.74
se Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes 4551 4551	imestone	'000 tonnes	816293	1093490	545321	2455103	419938	256187	498590	566011	830331	4045838	269859	6886754	9341858
'000 tonnes 4551 4551	fanganese Ore	or '000 tonnes	20227	6760	2904	29891	5802	2779	6421	325	10481	2015		27823	57713
	1arble**	'000 tonnes	'	'	4551	4551	1	ı	ı	I		I	ı	1	4551

Table - 1: Reserves/Resources of Minerals as on 1.4.2015: Madhya Pradesh

STATE REVIEWS

(concld)
I.
Table

Mineral Unit Pro STD Molybdenum Ore tonne Contained tonne MoS ₂ tonne 16 Potash Million tonnes	Proved STD 111	Probable	وار										010
tonne tonne tonne Million tor	1			_	Feasibility	Pre-fe	Pre-feasibility	Measured	Indicated	Inferred	Reconnaissance Total	ance Total	resources
	· ·	STD121 S	STD122	(¥)	117018	STD221	STD222	100010	S1D332	S1D355	S1D334	(g) +	(A+B)
ained 2	I												
2 2 2			ı	ı	ı	ı	ı	ı	,	8000000	ı	8000000	8000000
2 2 11:40#													
#o+:[[u	'		·	'	I	I	ı			5020		5020	5020
v11i+≏#	1605342		194757 1895247	3695346	681904	1653225	5402710	356344	2577575	3732142	749250	15153150 18848495	18848495
	- sət			'	ı	ı		'	1206		'	1206	1206
	9786485	2242501 1907116		13936102 1860354	1860354	2976581	2738198	520801	3294772	2984100	248405	14623211	28559313
Quartzite [#] '000 tonnes	'	'	·	ı	I	ı	ı			832		832	832
Quartz-													
Silica Sand [#] '000 tonnes	129	30	1781	1940	516		920	791	316	2717		5261	7201
Rock													
Phosphate tonne	5999399	5179	5179 1492370	7496948	6460616	7496948 6460616 14981336	15702042		2730000	10629258	50625	50553877	58050825
Shale [#] '000 tonnes	55	6	2	66	295	ı	1459	ı		33	'	1787	1853
Sillimanite tonne	ı	ı	ı	I	ı	ı	ı		ı	0	0 101600	101600	101600
Silver													
Ore tonne	ı	ı	ı	I	ı	ı	ı		2096000	1120000	,	3216000	3216000
Metal tonne	1	ı	ı	I	I	ı	ı		150.61	9.25	·	159.86	159.86
Talc-Steatite-													
Soapstone [#] '000 tonnes	185	20	79	283	179	378	1609		1679	6107	·	9952	10235
Vermiculite tonne	I	ı	ı	I	197	'	66	'		99	,	329	329

11-4

Figures rounded off Note: The proved and indicated balance recoverable reserves of Natural Gas in the State as on 01.04.2019 were 31.55 billion cu. m # Declared as minor mineral vide Gazette Notification dated 10.02.2015 ## Minor Mineral before Gazette Notification dated 10.02.2015

STATE REVIEWS

STATE REVIEWS

				(In million tonnes)
Coalfield	Proved	Indicated	Inferred	Total
Total	12182.45	12735.98	3874.67	28793.10
Johilla	185.08	104.09	32.83	322.00
Umaria	177.70	3.59	-	181.29
Pench-Kanhan	1515.71	991.93	982.21	3489.85
Pathakhera	290.80	88.13	68.00	446.93
Gurgunda	-	84.92	53.39	138.31
Mohpani	7.83	-	-	7.83
Sohagpur	2129.18	5659.25	293.47	8081.90
Singrauli	7876.15	5804.07	2444.77	16124.99

Table - 2 : Reserves/Resources of Coal as on 1.4.2019 : Madhya Pradesh

Source: Coal Directory of India, 2018-19

Table -3 : Details of Exploration Activities in Madhya Pradesh, 2018-19

Agency/	Location	Maj	pping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
GSI Coal							
Singrauli	Sarai-Uphradol block, Singrauli coalfield	-	-	6	3533.60	-	G2 stage regional exploration fo coal in Sarai-Uphradol block Singrauli coalfield, Singraul district was carried out involving a total of 3533.60 m drilling in six boreholes. The intersected thickness of Raniganj Formation in borehole is 85.80 m. The intersected thickness of Barrer Measures was found to range from

Measures was found to range from 171.80 m to 282.21 m whereas in Barakar Formation it showed variations from 377.27 m to 437.80 m. Intersected thickness of Talchir Formation is 20.63 m. Seven regional Barakar coal seams were intersected in most of the boreholes between the depths of $245.50\ m$ and $540.76\ m.$ The cumulative coal seam thickness showed variations from 7.75 m to 18.39 m whereas thickness of individual coal seam range from $0.59\mbox{ m}$ to $4.52\mbox{ m}.$ The continuity of coal seams was established to nearly 6.70 km along the strike and about 3.40 km along the dip direction within the block.

Agency/	Location	Map	ping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
Chhindwara	Kahua-Khireti sector, Pench Valley Coalfield	1:10000	22	5	2520.25	-	G3 stage regional exploration for coal was carried out in Kahua- Khireti sector, Pench Valley Coalfield. Exploration comprises mapping of 22 sqkm area on 1:10,000 scale and drilling of 5 boreholes to a cumulative depth of 2520.25 m (Two boreholes are in progress). Two boreholes were closed within Talchir Formation while one borehole was closed within Barakar Formation and two boreholes passed through Barakar Formation. Five regional Barakar coal seams (Seam-I to V in descending order), with cumulative thickness ranging from 15.35 m to 15.55 m, were intersected between the depths of 448.40 m and 589.25 m. Individual seam thickness showed variations from 0.69 m to 6.97 m. Seam IV was the thickest seam (5.85 m to 6.97 m) in the area. Seam-III generally was found to occur in two to three splits sections. The exploration will continue in field season 2019-20.
Base Metal Betul	South Western - part of Banskhapa Pipariy Sub block-I	- /a	-	10	1416.05	-	G-2 stage exploration over a strike length of 550 m was taken up to assess the base metal mineralisation in South Western part of Banskhapa-Pipariya Sub block-I. A total of 1,416.05 m drilling was done in 10 boreholess to check the depth persistence of mineralisation. Semi-massive to massive sphalerite ore with chalcopyrite and pyrite was found to occur within the garnetiferous- biotite-anthrophylite garnite schists. The disseminated mineralisation was seen manifested in the form of sphalerite, chalcopyrite, pyrite and a few pyrrhotite. Based on the analytical data of the boreholes, presence of mineralisation was established at vertical depth of 50 m, 100 m & 150 m over a strike length of 550 m with maximum values of 3.98% for Zn & 1.56% (contd)

Agency/	Location	Map	ping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							for Cu in boreholes MPBBP-08 and MPBBP-01 respectively with consideration of minimum stoping width of 2.0 m.
REE (RM) Alirajpur	Motibar- Jetpur-Eran- Pangura area	1:12500	100	-	-	-	Reconnaissance survey for Rare Earth Elements (REE), Rare Metals (RM) mineralisation with associated tin and tungstem mineralisation in Motibar-Jetpur- Eran-Pangura area in Alirajpur district was carried out with Large- Scale Mapping of 100 sqkm on 1:12,500 scale. Result of REE in soil orientation survey showed REE concentration in top soil due to immobility. REE results for 36 BRS samples showed maximum total REE values of 776.8 ppm.
	Parts of Moriyagaon- Amba-Dareri- Sorwa area	1:12500	100	-			Reconnaissance survey was taken up for REE/ RM mineralisation with associated tin and tungsten mineralisation in Moriyagaon- Amba-Dareri-Sorwa Area in Alirajpur district, Madhya Pradesh and in parts of Chhota Udaipur District, Gujarat. Large-Scale Mapping on 1:12,500 scale was carried out in Moriyagaon-Amba- Dareri-Sorwa area in 100 sqkm area with sampling. Allanite, apatite and zircon were the REE- bearing phases in the rocks. The maximum value of total REE was 947 ppm and was associated with the alkali feldspar granite exposed nere NW of Village Doveri. A very small mineralised zone of manganese was noticed around Village Moriyagaon. The bedrock samples analysed Mn values of 19.6% and 4.0%.
Betul	Parts of Murha- Bhawargarh Fort-Nishana- Chopardhana areas	1:12500	200	-	-	510	Reconnaissance survey for REE and RM mineralisation in parts of Murha-Bhawargarh Fort-Nishana- Chopardhana areas, Betul district, comprised mapping of 200 sqkm area on 1:12,500 scale with collection of 200 bedrock samples, 150 soil samples and 100 pit & (contd)

Agency/	Location	Maj	oping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							trench samples (PTS) sample along with collection of 30 sample each for EPMA. SEM study wa carried out to identify potentia zones of REE and RM mineralisation. SEM-EDS an Electron probe studies (EPMA showed presence of REE phase which is not in abundance Xenotime, monazite, Nb-T phases were found as inclusions i tourmaline crystals withi pegmatite. Allenite, apatite epidote, titanite, yttrium-bearin zircon, plumbopyrochore choukisite, calcite and garne mineral phases were found i porphyroblastic gneiss hornblende-biotite granite an pegmatites. The chemical analyse of 170 bedrock samples showe Σ REE values ranging from 10.6 ppm to 1,686.60 ppm. The value of Σ LREE were found to var from 9.96 ppm to 1,568.30 pp while that of Σ HREE were foun varying from 0.63 ppm to 148. ppm. The highest values of Σ RE was 1,686.6 ppm and that co Σ REY (REE+Y) was 1,964.6 ppm found at north-west co Bhawargarh Fort. Some sample co alkali syenites and hornblend biotite granites from north co Banka, Bhawargarh Fort, south co Pawahari and west of Chapra t south of Pawarjhanda Villages als showed >1,000 ppm Σ REE. The also were found to contain highe values of yttrium (Y) up to 34 ppm, niobium (Nb) up to 518 ppm beryllium (Be) from <1 ppm t 1,022 ppm and strontium (Sr) u to 993 ppm. Higher values co lithium (Li) were found in NE-SW trending quartz reef (up to 70 ppm) located in the NW of Village Kantawari, small tourmalinit patch within pegmatite (0.12% was located at SW of Village Murh and green microcline-bearin pegmatite veins (725 ppm) a extreme west of Village Banka

Agency/	Location	Mapı	ping	Dri	lling	a 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							One quartz-carbonate reef recorded high Rb values of 1,579 ppm. One stream sediment sample (SSS) from extreme west of Village Banka showed high \sum REE of 2,148 ppm. At the same locality a soil sample also show high \sum REE of 2,444 ppm. Majority of soil samples from south of Pawarjhanda and north of Banka Villages recorded moderate to high \sum REE (100.18 ppm to 1,899.66 ppm).
Shivpuri	Pichor block	1:12500	127	-		50	Reconnaissance survey for REE, tungsten, molybdenum and associated mineralisation in Pichor block, Shivpuri district involved mapping of 127 sqkm on 1:12,500 scale. A total of 75 cu. m. of trenching, 25 cu. m. of pitting and 50 number of soil samples were collected mostly in grid pattern from favourable location of REE enrichment. Bedrock samples (BRS) collected from lateritic capping around Village Rahi showed Cu values ranging from 185 ppm to 215 ppm and Ni values up to 105 ppm. REE analysis of 50 numbers of BRS samples showed total REE below 300 ppm except a few samples where in the range was from 455 to 523 ppm. Maximum total REE value of 523 ppm was observed from alteration zone developed at the contact of quartz reef and medium-grained granite around Village Khurai.
Chhatarpur	Basata and Kunwarpura area	1:12500	100	-	-	170	During reconnaissance survey for Rare Metal (Zr-Y-Nb) and REE mineralisation in parts of Bundelkhand Granitoid Complex (BGC) in Basata and Kunwarpura area, Chhatarpur district, Large- Scale Mapping of 100 sqkm on 1:12,500 scale along with 50 cu. m pitting & trenching and collection of 100 BRS, 50 PTS and 10 each for petrological, petrochemical, Ore-microscopy and EPMA studies were carried (contd)

Agency/ Mineral/	Location	Mag	oping	Dri	lling	G 1'	
District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							out. Two alkaline dykes of syenitic composition were located, on north of Village Raipura which traced for a length of 50 m with width up to 20 m and the other alkaline body located NNE of Village Kunwarpura showed widti up to 3 m and length up to 30 m Analytical results of alkaline dyke showed encouraging Σ REE value from 522 ppm to 1,314 ppm. Th average Σ REE values was 765 ppm. Σ LREE showed variation from 506-1,285 ppm while Σ HREI seemed to vary from 12 to 33 ppm. This dyke also showed Σ REI at 456-1,310 ppm in 10 pit & trench samples (PTS).
Diamond Panna and Chattarpur	Ajaygarh block	-		-	-		Reconnaissance survey fo Kimberlite/Lamproite was taken up in Ajaygarh block in parts o Panna and Chattarpur districts Madhya Pradesh and Band district of Uttar Pradesh. A pyroxenite body was identified in Bhawanipur of Ajaygarh bloch intruded in the medium-grained granite of Bundelkhand Granit Complex. A suspected diamon- grain of 2 mm size was identifier as Kimberlite indicator minera from the sample collected from Village Kauhari. SEM EDX study of the grain confirmed that it i a gem quality diamond withou any inclusion. Further SEN image of diamond showed tha the edges of the diamond wer sharp with solid angles witt elongated and pyramida hillocks, etc. which indicates it proximal primary source.
	Bariyarpur block	-	-	-	-	-	Reconnaissance survey fo Kimberlite/ Lamproite was taken up in Bariyarpur block in parts o Panna and Chattarpur districts Madhya Pradesh and Banda distric of Uttar Pradesh. In the Bariyarpu block both ultramatic and mati

(contd)

block, both ultramafic and mafic

Table – 3	3 (contd)
-----------	-----------

Agency/	Location	Mapping		Dri	lling	C 1:		
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated	
							dykes were identified. Kimberlite indicator minerals (KIMs) like pyrope garnets, ilmenites spinels, phlogopites and micro diamonds were recovered during Heavy Mineral Studies (HMS) of stream sediment samples Moissanite, a very rare naturally occurring silicon carbide minera has also been found during HMS which indicates proximal source of diamondiferous kimberlite This rare mineral was reported for the first time in Panna Diamond Belt. Kimberlitic affinities of pyrope garnets, ilmenites spinels, phlogopites later were confirmed by EPMA studies Overall, the presence of positive KIMs as an indication of a proximal primary source rock During field traverse, suspected altered lamproitic rock observed in north-west of was River Ken.	
Gold Singrauli	Budhadol- Sulkhan area	1:12500	100	-		-	During G4 stage survey for gold and associated sulphide mineralisation, an area of 100 sqkm area was mapped on 1:12,500 scale. Mineralisation mostly noticed in smoky and mixed quartz veins and at some places white quartz veins showed good evidences of mineralisation. Mineralisation in quartz veins was found to occur in the form of pyrite, chalcopyrite, galena, arsenopyrite, malachite and pyrrhotite as vug or fracture filling within the quartz veins. Besides Large-Scale Mapping, bedrock samples, petrochemical samples, petrological samples, EPMA and pitting/ trenching samples were also collected for chemical analysis. Pitting/trenching was carried out in ferruginous phyllite, quartzite and quartz vein to find subsurface indications of mineralisation. An aerial reconnaissance and PGRS study of 700 sqkm. area was carried out to reveal the presence of altered clay minerals. (contd)	

Agency/	Location	Mapping		Dri	lling	Sompling	Domonico	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated	
Sidhi	Dudhmania block	-		- -	-		During reconnaissance survey for gold, REE and associated mineralisation, various litho units that were demarcated in the area included sulphidic cher bands, BIF bands inter-banded with phyllite, green colour khak phyllites, tuffaceous phyllites ferrugenous phyllite, greywacked quartzwacke interbanded with phyllite, biotite schist, metabasal and intrusives in the form of dykes (Meta dolerites/ Metagabbro) and quartz veins. Pyrite, chalcopyrite and arsenopyrite were noticed as fracture fillings within sulphidic chert and BHC near Village Jardha. Disseminated grains of pyrite, chalcopyrite, galena and arsenopyrite were observed within BHC and small quartz veins near Bagdari, Siyari, Chelwa, Gidher Village. Quartz vein containing stains of malachite, grains o galena and arsenopyrite was observed near Village Parihasi Sulphide mineralisation was mainly in the form o disseminated grains and specks in quartz veins and at few places in smoky quartz veins near Village Majhigawan. Chalcopyrite and pyrite were seen in Bandar Ghori east of Village Pokhra, SW o Village Jurni and near Village	
Singraun	Birkuniya – Barawani – Chatri area						Majhigawan. Mafic bodies were mainly of two types, i.e., one i parallel to bedding and the othe that shows cross cutting with hos rock and that are mineralised.	
							Large-Scale Mapping of 100 sqkm was carried out to delineate mineralised zones for gold and iron bands. Demarcation of sulphide minerals-bearing smoky quartz veins was done along with iron bands within the banded ferruginous chert/ quartzite and magnetite bands in BMQ. The sulphide mineralisation was observed mainly in smoky quartz	

veins and as well as in chert band

Agency/	Location Area/ Block	Mapping		Dri	lling	Sampling	
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							and other intrusives. The occurrence of sulphides was sporadic and scattered within the rock. They were mainly arsenopyrite, chalcopyrite and pyrite. The mineralised quartz veins were primary and smoky in nature whereas the milky ones were secondary and non-mineralised.
Gluconite Singrauli	Bardi block Chitrangi Tehsil	1:12500	2.0	-	602.45	52	G3 stage preliminary investigation for glauconitic shale/sandstone was taken up. Thin bands of glauconitic shale/limestone were noticed within the green/grey shale and fawn limestone. The glauconitic shale/limestone was bluish-green in colour. In Bardi block, dark bluish-green colour, sub-rounded to rounded pellets of glauconite were clearly visible in coarse-grained glauconitic sandstone. These pellets were also seen to form thin laminations in fine to medium-grained sandstone. Glauconite grains/ pellets of bluish- green colour were notied in fawm limestone. Thin bands of glauconitic shale were noticed within the green/ grey shale and whitish grey clayey shale. Three modes of occurrences of glauconitic shale, fine to medium- grained sandstone and intercalated whitish grey clayey shale-pale green shale. ii) Inter-granular space filling: in coarse-grained glauconitic sandstone, glauconitic grains were seen to occur as inter- granular grains between quartz grains. In limestone, bluish-green colour glauconite grains were seen associated with allochem. iii) Fracture filling: Fracture filled bluish-green colour glauconite was noticed in limestone. The analytical results of 34 core samples collected from two (contd)

Agency/	Location Area/ Block	Mapping		Dri	lling	C 1:	Domorka
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							boreholes showed encouraging value for K_2O concentration ranging from 5.04 to 9.57%, while 18 BRS samples showed K_2O values varying from 6.04 to 11.27%.
Graphite Alirajpur	Juwari Bari- Chhoti- Rampura-Jorbat a	1:12500 rea	108.0			237	G4 stage reconnaissance survey in the area included Large-Scale Mapping, collection of 106 bedrock/channel samples and 105 PT samples for search of graphite mineralisation, 26 BRS for base metal analysis and geophysical survey (IP, SP, Magnetic and Resistivity) of about 14.19 L km area. During mapping, three separate discontinuous zones were demarcated: i) The eastern zone, having a cumulative length of about 900 m with width varying from 13 m to 24 m was exposed discontinuously from Betwasa in the south up to Kosduna in the north. A trench showed 18 m thick mineralised zone having 2.90% average fixed carbon values at 2% cut off, ii) The central zone was discontinuously exposed from Dehdala to west of Rampura over a cumulative strike length of about 2.7 km with thickness varying from 8 m to 22 m. The trench and channel samples indicated 7 m to 16 m thick graphite-bearing zones with average fixed carbon value varying from 1.18% to 2.13% at 2% cut off and iii) The western zone from Chamarbegra to Juwari Bari was discontinuously exposed over a cumulative length of 3.70 km with width varying from 5 m to 30 m. It shows 2.72% and 4.55% average fixed carbon values at 2% cut off in trench and channel samples with width varying from 5 m to 9 m. To the northeast of Juwari Bari, a separate thick carbon phyllite/ graphite schist associated with grey carbonaceous marble was demarcated having a length of about 1.65 km and width of about (contd)

Agency/	Location Area/ Block	Mapping		Dri	lling	Samplina	
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							160 m. Five grab/spot samples from this band indicated fixed carbon values ranging from 3.08% to 16.88%. Apart from graphite mineralisation, a sheared quartz vein with a length of about 1.25 km and width of 10-20 m showing evidences of copper mineralisation in the form of malachite staining, small specks of chalcopyrite and chalcocite also were recorded in the east of Kosduna. Out of 03 samples, 1 spot/grab sample indicated 1.45% copper.
	Netara- Khattali Bari-Phata Dam area	1:12500	100.0			178	A G4 stage reconnaissance survey was taken up in the area which included collection of 77 bedrock/ channel samples, 101 PTS and 25 BRS for base metal analysis. Geophysical survey (IP, SP, Magnetic and Resistivity) of about 11.2 L km area in prospective areas was carried out for graphite mineralisation. During mapping, two main separate discontinuous graphite-bearing zones were recorded in carbon phyllite associated with grey phyllite. The eastern mineralised zone recorded near Village Netara was about 8 m to 25 m in thickness and the cumulative strike length was of about 1.5 km. The trenches in this area indicated two to four graphite mineralisation of width varying from 1 m to 12 m. The analytical results of BRS showed fixed carbor value varying from <1% to 15.8% and in trench samples from <1% to 11%. In the western graphite- bearing area in south to SE of Village Jamani, two separate closely spaced linear zones of graphite schist/carbon phyllite were traced for a cumulative strike length of over one km with width varies from a few meters to 10 m. The BRS in Jamani area showed the fixed carbon content to be ranging from <1% to 9.61%. The graphite schist /carbon phyllite in the east of Village Kherwa recorded a cumulative strike length of over 700 m with thickness ranging from 4 m to 10 m.

Table – 3	3 (contd)
-----------	-----------

Agency/ Mineral/	Location Area/ Block	Мар	ping	Dri	lling	C 1'	Demenia
District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
Betul	Golighat-Makra block Junawani block	1:2000	1.25 0.10	21	1746.3		Under G-3 stage of investigation an area of 1.25 sqkm, (1.15 sqkm in Golighat-Makra main block was mapped on 1:2,000 scale Geophysical survey in wester part of the Golighat-Makra main block was carried out in continuation of geophysica survey in Golighat area (which wa covered during FS 2017-18) to evaluate the extent and potentia of graphite mineralisation. Th IP/resistivity survey in Golighat Makra main block was intended to help in delineating host rock and to assess the extent of graphit mineralisation in soil cover areas The graphite schist associated wit quartz mica schist was found to occur as enclaves within th granite/granite gneiss. A total o 1,746.30 m of drilling in 2 boreholes (comprising 09 first, 00 second and 01 third-level borehol in Golighat area, 02 each first an second-level boreholes in Makr area and 01 first-level borehole in Junawani area) were carried out The boreholes were drilled at 200 m interval and mineralisation wa targeted to be intersected at 30 m 60 m and 90 m vertical depth in 1st, 2nd and 3rd level boreholes respectively. All boreholes except one borehole intersected two to three zones of graphit mineralisation of variou thicknesses. The width o mineralised zones was found to vary from 0.50 m to 17.30 m along the borehole. The subsurfac data indicated that the width o mineralised zone showed variations along the strike as wel as depth and exhibited pinchin and swelling nature. The graphit mineralised zone showed variations along the strike as wel as depth and exhibited pinchin and swelling nature. The graphit mineralised in for strik length with cumulative strik length of 1,400 m. In Makra area the strike length of graphite

11-16

Mineral/ Area/ District Block Scale Area No. (sq km) boreh	Meterage s		npling No.)	Remarks Reserves/Resources estimated bearing mineralised zone was about 300 m and was seen to continue further east. The chemical analysis results received so far indicated that the average fixed carbon value in the intersected mineralised zones was observed to vary from 1.21% to 12% in Golighat area and 1.71% to 11.90% in Makra area. In Junawani area, only one borehole was drilled and two very thin mineralised zones of 0.40m and 1.10 m only were intersected. The strike length of graphite schist was only 90 to 100 m. Therefore, no further drilling was carried out in Junawani area. The subsurface drilling data indicated
				300 m and was seen to continue further east. The chemical analysis results received so far indicated that the average fixed carbon value in the intersected mineralised zones was observed to vary from 1.21% to 12% in Golighat area and 1.71% to 11.90% in Makra area. In Junawani area, only one borehole was drilled and two very thin mineralised zones of 0.40m and 1.10 m only were intersected. The strike length of graphite schist was only 90 to 100 m. Therefore, no further drilling was carried out in Junawani area. The
				substrikte drifting data indicated that the host rock for graphite mineralisation was graphite bearing quartz mica schist intruded by granite along the foliation planes. Largely the graphite bearing bands are found in association with granite/granitd gneiss and sometimes as interbands within the quartz mica schist Shearing was observed to be dominant in the eastern part of Golighat-Makra main block where graphite mineralisation was found to be associated with brecciated cherty granite and graphite was also remobilised along fracture planes. The graphite noticed as grey to greyish-black in colour was soft, greasy, schistose and flaky in nature. Small flakes of stee grey graphite were seen mixed intimately with muscovite flakes and ash grey powdery material in the graphite schist. Based on the work carried out under G3 stage o investigation, the item was seamlessly upgraded to the G2 stage of exploration in Goligha block. The study is to continu as spillover of FS 2019-20.
L imestone Katni & Jamuwanikala 1:4000 0.48 12 Satna block & Bhatia limestone block		5 -		A G2 stage general exploration for limestone and bauxite involve- detailed mapping of 0.48 sqkm or 1:4,000 at both Jamuwanikala an Bhatia limestone blocks alon

Agency/ Mineral/	Location Area/ Block	Mapping		Drilling		Sampling	Demontre
District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Remarks Reserves/Resources estimated
							with drilling (644.15 m) and other connected sampling Jamuwanikala block fo limestone and bauxite covered and area of about 0.23 sqkm. In thi block, 4 boreholes were driled to a cumulative depth of 304.05 m Jamuwanikala block was seen represented by grey-bluish to grey coloured, well-bedded limestone intercalated with shale. Southern margin of bloch was represented by Rohtashgarl limestone. A total of 8 borehole were drilled to a cumulative depth of 340.10 m in Bhatia limestom block (0.25 sqkm). Bhatia bloch was observed to be mainly represented by light gray to darl gray, moderately hard, fractured and stromatolitic limestone Carbonate vein of 0.5-1 cm wa present at various depths.
MECL Base Metal Shivpuri	Mohar Cauldron area	1:12500	100	-		177	A G4 level exploration fo base metal and gold was taken up in Mohar Cauldron area Shivpuri district. Exploration work comprised remote sensing study of 100.00 sqkm, geologica mapping on 1:12500 scale and collection of 91 bedrock samples 86 stream & soil samples. These samples were analysed for Cu, Pb Zn, Au, Ag, REE, U, Mo and W Analysis of bedrock sample showed Cu values ranging from < 1.0 ppm to 242.0 ppm, Pb value from 13.91 ppm to 41.14 ppm Zn values from 10.17 ppm to 129.80 ppm, Au value as < 0.1 ppm, Ag values from <0.1 ppm to 0.3 ppm, U values from 1.42 ppm to 20.53 ppm and REE tota values from 63.97 ppm to 359.34 ppm. The granite showed REH total values from 63.97 ppm to 359.34 ppm, while andesitu showed 114.09 ppm to 227.45 ppm and rhyyolite showed 129.78 ppm to 352.14 ppm.

Agency/	Location	Mapping		Drilling		a i'	Remarks		
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Reserves/Resources estimated		
HCL Base Metal Balaghat district	Malanjkhand copper mine	-	-	10	1950.85	-	Exploration in Malanjkhand copper mine, Balaghat district, Madhya Pradesh was carried out to find out extent of ore body for dimension of stope and grade for underground mining. A total 1950.85 meterage were drilled in 10 boreholes. Resources estimated of the mine are placed at about 308.45 million tonnes with average grade of 0.92% Cu.		

Table – 4 : Mineral Production in Madhya Pradesh, 2016-17 to 2018-19 (Excluding Atomic Minerals)

									(Valu	ie in ` '000)
	TT '.		2016-17			2017-20)18		2018-19 ((P)
Mineral	Unit	No. of mines	Quantity	Value ^s	No. o mine	-	ity Value ^s	No. of mines	Quantity	Value ^s
All Minerals		219		51614133	227		78042284	213		82281327
Coal	'000t	-	105013	-	-	112127	-	-	118661	-
Natural Gas (ut.) ⁺	тст	-	7	-	-	200	-	-	357	-
Bauxite	t	20	676478	543776	19	593633	442907	20	722549	577694
Copper Ore	t	-	2415330	-	-	2339035	-	-	2542159	-
Copper Conc.	t	1	68187	3128301	1	75605	3486098	1	82945	4549382
Iron Ore	'000t	17	1771	767339	15	2743	1239712	18	2792	1449207
Manganese Ore	t	48	650316	4532518	42	837041	6760106	40	944207	7820952
Phosphorite	t	4	149700	129033	4	113947	108783	4	98600	79296
Diamond	ct	2	36491	639562	2	39699	374110	2	38437	581058
Limestone	'000t	127	36164	8405039	144	43060	10779367	128	49762	10763488
Minor Minerals		-	-	33468565	-	-	54851201	-	-	56460250

Note: The number of mines excludes fuel and minor minerals.

\$ Excludes the value Fuel minerals. + Coal Bed Methane

STATE REVIEWS

Table – 5 : Principal Mineral-based Industries

Industry/plant	Capacity ('000 tpy)
Aluminium/Alumina	
Hindalco Industries Ltd, Mahan 360 Aluminium, Bargwan, Distt Singrauli	(Aluminium)
Asbestos Products	
Everest Building Products Ltd, Kymore	NA
Kalani Industries Pvt. Ltd, Pitampur, Dhar	NA
Ramco Industries Ltd, Maksi, Distt Shajapur	NA
Calcined Lime	
Rekha Harlalka, Jukehi, Maihar	11
Padampani Tripathi, Mamalime Industries Rajarwara, Katni	9.6
Cement	
ACC Ltd, Kymore, Distt Katni	2720
Bhilai Jaypee Cement Ltd, Babupur, Satna	1300
Birla Corpn. Ltd, (Satna Cement Works & Birla Vikas Cement), Satna	2200
Birla Coorporation Ltd, (Erstwhile Reliance Cement Pvt. Ltd, Maihar, Distt Satna	3000
Century Textiles & Ind. Ltd, Maihar Cement, Maihar (unit I&II), Distt Satna	4200
Heidelberg Cement (I) Ltd, Narsingarh, Distt Damoh	2000
Jaiprakash Power Ventures, Singrauli (G)	2000
Jaypee Rewa Cement Plant, Distt Rewa	2500
Jaypee Bela Cement Plant, Distt Rewa	2600
KJS Cement, Rajnagar, Distt Satna	2200
Prism Cement Ltd, (Unit I & II), Satna	6600
Satguru Cement Pvt. Ltd, Ghursal, Gandhawani	95
UltraTech Cement Ltd, Sidhee	2300
UltraTech Cement, Dhar Cement Plant, Tonki, Temarni sounul, Golpura Manawar	3500
UltraTech Cement, Vikram Cement Plant, Khor, Distt Neemuch	4500 (OPC) 4500 (PPC)
UltraTech Cement Ltd, Majhigawan, Rampur Naikin	3000
Ceramic	
Roca Bathroom Products Ltd, Dewas	NA
Govind Tiles Pvt. Ltd, Garra, Distt Balaghat	NA
Calcined lime	
Som lime work, Jukehi, Katni	21.6
Jai Mata lime Industries Pathra, Katni	15.2
Dharampal Industries Pathra, Katni	6
Sampuran Singh Saluja Patra, Katni	6.07
	(Contd.)

Table-5 (concld)

Industry/plant	Capacity
	('000 tpy)
Fertilizer	
Agro Phos. (India) Ltd, Dewas	45 (SSP
Arihant Ferts. & Chems. India Ltd, Kanawati, Neemuch	66 (SSP
Basant Agro Tech (India) Ltd, Jawad, Neemuch	45 (SSP
Coromandel International Ltd, (Formerly, Liberty Urvarak Ltd,), Nirmani Khargone	100 (SSP
Indra Industries Ltd, (Formerly, Swastik Ferts & Chems Ltd,), Indore, Dhar	66 (SSP
KMN Chemicals & Fertilizers Ltd, Diwanganj, Raisen	60 (SSP
Khaitan Chemical & Fertilizers Ltd, Nimrani, Distt Khargone	400 (SSP 115.5 (H ₂ SO ₄
NFL, Vijaipur (Unit I & II), Distt Guna	2066.1 (Urea
Krishna Phoschem Ltd, Meghnagar, Jhabua	120 (SSP
Madhya Bharat Agro Products Ltd, Rajoa, Sagar	60 (SSF
Madhya Bharat Phosphate Pvt. Ltd, (Unit I), Diwanganj, Sanchi, Raisen	132 (SSF
Madhya Bharat Phosphate Pvt. Ltd, (Unit II), Meghnagar, Jhabua	165 (SSF
Mexican Agro Chemical Ltd, (Formerly, Asha Phosphates Ltd,), Jaggakhedi, Mandsaur	60 (SSI
Mukteswar Fertilizers Ltd, Narayankhedi, Ujjain Rama Phosphates Ltd, Indore	. 60 (SSF 250 (SSF 102 (H ₂ SO
Suman Phosphates and Chemicals Ltd, Indore	330 (SSF
Varun Fertilizers Pvt. Ltd, Dewas	100 (SSF
Ferroalloys	
Crescent Alloys Pvt. Ltd, Seoni	4.
Jalan Ispat Castings Ltd, Meghnagar, Distt Jhabu	a 1
MOIL Ferro Manganese Plant, Bharveli, Distt Balaghat	1
Petroleum Refinery	
Bharat Oman Refineries Ltd, Bina, Distt Sagar	600
Refractory	
ACC Refractories, Katni	6
Calderys India Refractories Limited	7
Katni Refractory Works, Katni Murwara	30 (Binder 9 (Grout
Mahakoshal Refractories Pvt. Ltd, Katni	61.0
Mahakoshal Refractories Pvt. Ltd, Gudri, Bohariband	3
Premier Refractories India Pvt. Ltd, Katni.	5

Note: Data not readily available for fertilizer and cement industries on respective websites, is therefore taken from Indian Fertilizer Scenario, FAI Statistics and Survey of Cement Industry & Directory, respectively.