

Indian Minerals Yearbook 2022

(Part-I)

61st Edition

STATE REVIEWS (Arunachal Pradesh)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

July, 2024

ARUNACHAL PRADESH

Mineral Resources

The most important mineral resource of the State is **petroleum & natural gas** and its chief occurrence is reported in Ningru and Dam Duma areas. These hydrocarbon deposits are located in the Assam Arakan Fold Belt (AAFB) and Upper Assam basin in the State. The State also reports resources of **coal** in Namchick Namphuk and Miaobum Coalfields; **Copper** in East Kameng district, **dolomite** in West Kameng district; **fuller's earth** in Tirap district; **graphite** in Lohit, East Siang and Upper Subansiri districts; **limestone** in Dibang Valley, Lohit, East Siang and Upper Subansiri districts and **quartzite** in West Kameng district (Tables-1 and 2).

Exploration & Development

Exploration activities carried out by GSI for lithium, tin, vanidium and tungsten during the year 2021-22 are furnished in Table-3.

Production

Petroleum (crude) and Natural gas (ut.) were the important mineral items produced in Arunachal Pradesh. The value of minor minerals' production was estimated at ₹ 42 crore for the year 2021-22 (Table - 4).

Table – 1 : Reserves/Resources of M	Minerals as on 1.4.2020 : Arunachal Pradesh
-------------------------------------	---

Mineral				Remaini	ing resources	resources		
	l Unit Total Reserves (A)		Indicated STD332	Inferred STD333	Reconnaissance STD334	Total (B)	Total resources (A+B)	
Copper								
Ore	'000 tonnes	-	-	-	10	10	10	
Metal	'000 tonnes	-	-	-	0.02	0.02	0.02	
Graphite	tonne	-	-	3200000	73118257	76318257	76318257	
Limestone	'000 tonnes	-	49220	433575	1	482796	482796	

Figures rounded off.

Table – 2 : Reserves/Resources of Coal as on 1.4.2022: Arunachal Pradesh

(In million tonnes)

Coalfield	Proved	Indicated	Inferred	Total
Total	31	40	19	90
Namchik-Namphuk	3 1	40	13	84
Miao Bum	-	-	6	6

Source: Coal Directory of India, 2021-22.

Agency/ Mineral/ District	Location	Map	ping	Drilli	ng	Sampling (No.)	Demodes
		Scale	Area (sq km)	No. of boreholes	Meterage		Remarks Reserves/Resources estimated
GSI							
Lithium, Tin 8	& Tungsten						
West Kameng	Nafra area	1:12500	50			100	Reconnaissance survey for lithiur tin & tungsten minerals was carrie out in Khellong-Khazalang area West Kameng district, Arunach Pradesh. An area of 50 sq. km. are was taken up for reconnaissand survey with large scale mapping of 1:12500 scale. A total of 25 cu. of trenching were done in areas estimated strike extension of th pegmatite veins. However th bedrock was not exposed trenches. Total 25 nos soil sample from the trenches yielded 33-11 ppm Li. 11 nos. of channels we made in the pegmatite, contact zono of gneiss, quartz vein, quartzite, gro phyllite, graphite schist, chlori quartz mica schist. A total of 67 no bedrock samples (including 2 channel samples), 30 nos. strea sediment samples, 20 no petrological samples, 20 no petrological samples, 20 no mount samples, 10 nos regolit samples, 20 nos heavy miner samples were collected. The strea sediment samples yielded 10 to 10 ppm Li, 3.5 to 15.9 ppm Sn, 0.9 5.1 ppm W. Regolith samples yielded <5 to 63 ppm Li from 10 sample 3.5 to 11.8 ppm Sn, 1.1 to 2.5 pp W. 9 nos of PCS samples yielded 4 to 330 ppm Li. Micaceous quartzi in chlorite schist reported th maximum of 330 ppm. 11 nos PC samples yielded 2.6 to 8.4 ppm S and 1 to 3.4 ppm W.Li valu analysed from chlorite-quartz mic schist yielded 25 ppm to 302 pp Li from 6 bedrock sample Pegmatite veins yielded 14 ppm 65 ppm Li from 10 samples. Or sample of granite yielded 70 pp Li. Quartz veins yielded <5 ppm 21 ppm Li from 8 samples. Grani gneiss yielded <5 ppm to 116 pp Li from 21 samples. Sn values fro available 26 nos bedrock sample

Table – 3 : Details of Exploration Activities in Arunachal Pradesh, 2021-22

Table – 3 (concld)

Agency/ Mineral/ District	Location	Mapping		Drilli	ng	C 1'	
		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							have yielded upto 24 ppm. W value from available 26 nos bedroc samples yielded 0.6 to 52.5 ppm W values from quartz/quartz feldspathic veins yielded 0.6 ppr to 52.5 ppm. W values from granit gneiss yielded a maximum o 18 ppm. The chlorite quartz schis has sampled Li values of 280 t 330 ppm from three samples The relative high values of Li i the schist may be attributed to th granite derived Li-rich fluid from the Bomdila gneiss. Based o the studies carried out an analysis results obtained, the Li Sn, W values in the study are are not encouraging, except fo some relatively higher values o Li from chlorite quartz mica schis upto 330 ppm.
Tin East Kameng	Seppa area	1:12500	52	-			Large Scale mapping of a 52 sq. km block on 1:12,500 scale was carrier out to evaluate the potential o Tantalum and Caesium mineralisation in the assigned area The area is located in the western part of Arunachal Pradesh exposing rocks of meta-sedimentarie comprising quartz mica schist & schistose quartzite belonging to th Seppa Formation (equivalent with Khetabari Fm.) and garnet biotit gneiss, biotite gneiss belonging to the Lumdung Gneiss (equivalen with Bomdila Gneiss) of th Bomdila Group of Palaeo proterozoic age, followed by amphibolite and tournaline bearing pegmatites as the younger intrusive On the basis of Large-Scal- Mapping, by visual estimation and based on physical properties, f pegamtite bands have been physically identified namely: Band 1, Band 2 & Band 3. Band 1 which is the major Tourmaline bearing pegmatite band with 60 m thickness and ~1km strike length near Pach area with partial kaolinisation a

Map	ping	Drilli	ng	Sampling	Remarks
Scale		No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
					places. Band 2 a relatively small

Table -3 (concld)

Location

Agency/

Mineral/

District

Vanadium West Siang

Kaying

Village

1:12500

50

Band 2 a relatively smaller pegmatite band with 20-25 m thickness and 200 m strike length. Band 3 a kaolinised pegmatite band of ~10 m thickness and 100-150 m strike length. Besides, this, there are several surface manifestations like leaching, iron staining etc which were indications of sulphides were also studied and sampled. The highest value of Cs is 23.24 ppm, with values ranging from 3.5 ppm -23.24 ppm in stream sediment, and 17.34 ppm in BRS and 15.678 ppm (channel-CH1A), 15.652 ppm (channel-CH4) and 20.66 ppm (trench T4) all in pegmatite band 1. The highest value of W is 763.397 ppm (remarkably high), with values ranging from 2 ppm 19.22 ppm in stream sediment, and 17.34 ppm in BRS and 11 ppm to 127.75 ppm in channel-CH1A, 3ppm to 10 ppm in channel-CH4 all in pegmatite band 1, and less than 6 ppm in channel 3 & 4. The tantalum values are not so remarkable as the highest value 9.44 ppm in BRS. Two channel samples (CH-5) have high uranium values 58 ppm & 93 ppm. Few stream sediment samples have 20 ppm to 30 ppm U and 18 SSS have thorium values greater than 60 ppm.

A total of 50 sq. km. area was mapped in large scale (1:12,500 in and around Kaying area of West Siang district, Arunachal Pradesh to delineate and assess the potentiality of the area for vanadium, graphite, REE and base metal mineralisation. Three bands of carbonaceous phyllite have been delineated for the first time in the area, with about 2 kilometers in strike length and thickness of 15-20 meters. In the northern part of the study area, a band of crystalline limestone has been mapped for the first time with a thickness of roughly 15-20 meters and a strike extension of 3 kilometers. To the northwest of Kaying Village, two bands of tourmaline bearing

90

Table – 3 (concld)

Agency/ Mineral/ District	Location	Mapping		Drilli	ng	Sampling		
		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Remarks Reserves/Resources estimated	
							pegmatite have also been mapped with a thickness of 10-15 meters and a strike extension of 500 meters approximately. A total of 60 nos o bed rock samples (including channe samples), 20 nos of trench sample: and 10 nos of Petrochemical sample: were systematically collected and analysed chemically. Analytica results for carbonaceous phyllite exhibit vanadium values ranging from 101-1303 ppm, chromium values ranging between 88-1688 ppm, copper up to 1262 ppm rubidium values ranging from 76-836 ppm, lead up to 683 ppm, tin value range from 2-26 ppm, tungsten up to 100 ppm, chromium values up to 1062 ppm and arsenic ranging from 2-1360 ppm. PCS sample o quartzite exhibits LREE value o 221ppm and HREE value of 27.5 ppm, dolomitic limestone exhibits LREE value of 4ppm and HREE value of 0.8 ppm. Bed rock samples o carbonaceous phyllite exhibit LREH values ranging from 104-348 ppm and HREE values range from 3-20 ppm. Also, the chemical analysis o the samples from the study area ha not given encouraging values for gold so far with values of up to 50 ppb Trench samples have yielded chromium values ranging from 342 1590 ppm with an average of 970 ppm. The petrochemical samples o carbonaceous phyllite/graphite havy yielded vanadium values up to 3122 ppm, chromium values up to 1688 and copper up to 1368 ppm.	
Kra-Daadi	Talangriang- Pakba-Jamin area	1:12500	50	-	-	206	A G-4 stage investigation was carried out involving large scale geologica mapping on 1:12,500 scale and a total of 50 sq.km. area was covered under LSM with collection of 100 nos of BRS, 52 nos of PTS, 12 no of PS, 10 nos of OM and 24 nos o PCS. During the course of LSM, five carbonaceous phyllite bands have been identified and same have been	

Table – 3 (concld)

Agency/ Mineral/ District	Location	Mapping		Drilli	ng	Sampling	Remarks	
		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated	
							Carbonaceous phyllite band in the Talangiang area is traced for a strik- length of 600m (6km) with the width varies from 80 m to145 m Band 2: Carbonaceous phyllite bar is exposed in the area south of zer point has been traced for a strik- length of 3.4 km within block are 1.2 km strike length has been observed outside of the this marked block with the width varies from 1 m to 35 m. Band 3: Carbonaceous phyllite band is exposed in the Pungrung-Pakba area has been delineated for strike length of 9.7 km with the width varies from 10 m to 75 m. Band 4: First time reported a carbonaceous phyllite band in the Layang-Chate area has been delineated for a strike length of 5.6 km with the width varies from 10 m to 35 m. Band 5: Carbonaceous phyllite band is exposed to the norm of zero point has been traced for strike length of 1.5 km havin width varies from 10 m to 15 m Leaching, ferruginisation, yello and red colour alterations have been noticed in the many spots in the carbonaceous phyllite band and are indicative of sulphic mineralisation. The results of channel samples from carbonaceous phyllite show the value of Vanadius vary from 289 ppm to 517 pp; and that of Au is less than 50 pp] The results of pitting and trenchir samples from carbonaceous phyllite show that the Vanadium value ranging from 108 ppm to 665 pm The fixed carbon content in the carbonaceous phyllite varies from 0.52 % to 8.95%. The analytic: results of 24 nos. of PCS reve- that Fe ₂ O ₃ content in the carbonaceous phyllite band varies from 8.81 - 10.90% and one samp from yellow coloured encrustation found in the carbonaceous phyllite in Chate area showing the value upto 17. 27%.	

Table-4 : Mineral Production in Arunachal Pradesh, 2019-20 to 2021-22(Excluding Atomic Minerals)

(Value in ₹'000)

		2019-20				2020-21	2021-22 (P)			
Mineral	Unit	No. of mines	Quantity	Value [§]	No. of mines	Quantity	Value [§]	No. of mines	Quantity	Value [§]
All Minerals		_		455845	_		397944	-		416302
Natural Gas (ut.)	mcm	-	45	-	-	56	-	-	58	-
Petroleum (crude)	'000t	-	56	-	-	54	-	-	48	-
Minor Minerals		-	-	455845	-	-	397944	-	-	416302

\$ Excludes the value of Fuel minerals.