

Indian Minerals Yearbook 2022

(Part-I)

61st Edition

STATE REVIEWS (Jharkhand)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

July, 2024

JHARKHAND

Mineral Resources

Jharkhand is one of the major mineral producing States. It is the sole producer of flint stone in the country and is one of the leading producers of coal, gold, graphite, bauxite, iron ore & limestone. Uranium ore is mined and processed by Uranium Corporation of India Ltd (UCIL) for supply as fuel to the country's nuclear power reactors through six underground mines, one opencast mine, and two processing plants. Jharkhand has the sole resources of emerald mineral. It accounts for about 31% rock phosphate, 23% iron ore (haematite), 30% apatite, 14% andalusite, 20% cobalt ore, 20% copper ore, 9% each granite (dimension stone) & graphite and 5% silver ore resources of the country.

Important minerals that occur in the State are bauxite in Dumka, Gumla, Latehar, Lohardaga & Palamu districts; china clay in Dumka, Hazaribagh, Lohardaga, East & West Singhbhum, Sahebganj & Ranchi districts; coal in Bokaro, Deoghar, Dhanbad, Giridih, Godda, Hazaribagh, Palamau, Pakur & Ranchi districts; copper in Hazaribagh & East Singhbhum districts; dolomite in Garhwa & Palamu districts; felspar in Deoghar, Dhanbad, Dumka, Giridih, Hazaribagh, Jamtara, Koderma, Latehar, Palamu & Ranchi districts; fireclay in Dhanbad, Dumka, Giridih, Godda, Hazaribagh, Latehar, Palamu, Ranchi & West Singhbhum districts; gold in East Singhbhum district; graphite in Palamu district; iron ore (haematite) in West Singhbhum district; iron ore (magnetite) in Gumla, Hazaribagh, Latehar, Palamu & East Singhbhum districts; kyanite in Saraikela-Kharsawan & West Singhbhum districts; limestone in Bokaro, Dhanbad, Garhwa, Giridih, Hazaribagh, Palamu, Ranchi, East & West Singhbhum districts; manganese ore in East & West Singhbhum districts; mica in Giridih and Koderma districts; ochre in West Singhbhum district; dunite/pyroxenite in East Singhbhum district; quartz/silica sand in Deoghar, Dhanbad, Dumka, Giridih, Godda, Hazaribagh, Jamtara, Koderma, Latehar, Palamu, Ranchi, Sahebganj, Saraikela-Kharsawan & West Singhbhum districts; and **quartzite** in East & West Singhbhum districts.

Other minerals that occur in the State are andalusite and rock phosphate in Palamu district; apatite, chromite, cobalt, nickel, gold & silver in East Singhbhum district; asbestos in East & West Singhbhum districts; barytes in Palamu & East Singhbhum districts; bentonite in Pakur & Sahebganj districts; garnet in Hazaribagh district; granite in Deogarh, Dhanbad, Dumka, Giridih, Godda, Gumla, Hazaribagh, Koderma, Lohardaga, Palamu, Ranchi & East Singhbhum districts; sillimanite in Hazaribagh district; talc/steatite/ soapstone in Giridih, Koderma, Palamu, East & West Singhbhum districts; pyrophyllite in Saraikela-Kharaswan district; titanium minerals in Ranchi and East Singhbhum districts; and vermiculite in Giridih & Hazaribagh districts (Table - 1). The reserve/resources of coal and the various coalfields located in Jharkhand are furnished in Table - 2.

Exploration & Development

The details of exploration activities conducted by GSI for base metals, graphite, vanadium and associated minerals, tungsten, rare earths elements, rare metals, lithium during the year 2021-22 are furnished in Table - 3.

Production

Coal was the principal mineral item for which production was reported in the State. The other important minerals produced are Bauxite, Copper Ore and Concentrate, Iron Ore, Limestone, etc. The value of minor minerals' production was estimated as \gtrless 40 crore for the year 2021-22. There were 44 reporting mines in 2021-22 in case of MCDR of minerals (Table – 4).

Mineral-based Industry

The present status of each mineral-based industry is not readily available. However, the principal large and medium-scale mineral-based industries in the organised sector in the State are furnished in Table - 5.

Mineral Unit Andalusite '00 Apatite ton			Reserves	es					Remainin	Remaining Resources				E
		Proved	Pro	Probable	Total	Feasibility	Pre-feasibility	ility	Measured	Indicated	Inferred	Reconnaissance	Г	resources
	- 4		STD121	STD122	(Y)	117018	STD221	STD222	51D331	5111332	510333	S1D334	(B)	(A+B)
	000 tonnes	,	·	1	'		,		'	,	'	11800	11800	11800
	tonne	ı	·	,	ı	·	,		2110000	1620000	3540000	I	7270000	7270000
Asbestos ton	tonne	ı	·	,	ı	·	3871	18309	2885	5769	124059	I	154893	154893
Bauxite '00	000 tonnes 2	29524	731	9717	39972	25895	7647	14969	25962	63224	70527	41050	249272	289244
Chromite '00	000 tonnes	ī	ı	'	ı	ı	ı		15	98	623	·	736	736
Cobalt Mi	Million tonnes	ı	'	'	·				·	2		7	6	6
Copper														
Ore '00	000 tonnes	6150		3000	9150	10445	2804	3988	87330	06866	37855		242313	251463
Metal '00	000 tonnes	72.08	•	35.37	107.45	115.59	29.98	45.9	1002.92	1023.12	454.7	ı	2672.21	2779.66
Emerald Kil	Kilogram	ı		•								55869	55869	55869
Garnet ton	tonne	ı				·		88303	'		21768		110071	110071
Gold														
Ore (Primary) tonne	nne	•	,		ı	ı		9206	ı	4710966	4579355	767000	10076527 10076527	10076527
Metal (Primary) tonne	nne	'	•			I	'	0.08	'	2.24	12.49	0.62	15.43	15.43
Graphite ton	tonne 209	2091442	,	512637	2604079	1341224	491883	3020107	60607	5167431	6639828	681208	17402288	20006367
Iron Ore														
(Heamatite) '00	'000 tonnes 388078	38078	16760	129839	534677	324634	902980	814308	101700	122673	617586	617586 1291588	4175469	4710146
Iron Ore														
(Magnetite) '00	000 tonnes	ı	'		'	ı	518	1986	411	3948	3722	82	10667	10667
Kyanite ton	tonne	1	331193		331193	1017105	920088	523589	'	1754900	3727685		7943367	8274560
Limestone '00	000 tonnes	6780	3512	395	10687	74071	50565	11535	91922	13220	356962	11803	610078	620765
Manganese Ore '00	'000 tonnes	132	433	493	1059	1394	1046	5198	'	1395	4658		13691	14749
Nickel Mi	Million tonnes	ı	'		'	ı	'		'	2	7		6	6
Potash Mi	Million tonnes	ı	·	ı	·	·		ı	'	'	152	ı	152	152

Table -1: Reserves/Resources of Minerals as on 1.4.2020: Jharkhand

11-3

STATE REVIEWS

(p	
ncl	
(con	
1	l
le	l
P.	l
Tabl	

			Res	Reserves					Remaining	Remaining Resources				
Mineral	Unit	Proved	Prob	Probable	Total	Total Feasibility	Pre-feasibility	sibility	Measured	Indicated	Inferred	Measured Inferred Reconnaissance Total	nce Total	Total resources
		STD 111	STD121	STD121 STD122	(Y)	STD211	STD221	STD222	STD331	STD332	STD333	STD334	(B)	(A+B)
Rare-earth														
Elements Rock	tonne			'				ı	ı	·	4		4	4
Phosphate	tonne			'						- 1(- 107370000	- 10	73700001	- 107370000107370000
Sillimanite	tonne		'	ı				ı		ı	83000		83000	83000
Silver														
Ore	tonne	-						ı			23840000	- 2.	23840000 23840000	23840000
Metal	tonne								•	·	5.22	•	5.22	5.22
Titanium	tonne	-						ı	- 3	630000 2	20635000 2	3630000 20635000 2338767 26603767 26603767	6603767	26603767
Vermiculite	tonne								•	·	30048		30048	30048
Figures rounded off.	nded off.													

			(In million tonnes)
Coalfield	Proved	Indicated	Inferred	Total
Total	55749	26994	5095	87838
Raniganj	1594	445	-	2039
Jharia	17735	1798	-	19533
East Bokaro	3977	3553	762	8292
West Bokaro	3923	1279	17	5218
Ramgarh	937	912	58	1906
North Karanpura	11774	6173	1865	19812
South Karanpura	6045	1267	1083	8394
Aurangabad	352	2142	503	2997
Hutar	191	27	32	250
Daltonganj	84	60	-	144
Deogarh	326	74	-	400
Rajmahal	8811	9267	774	18852

Table – 2 : Reserves/Resources of Coal as on 1.4.2023: Jharkhand

Source: Coal Directory of India, 2022-23.

Table –3 : Details of Exploration Activities in Jharkhand, 2021-22

Agency/	Location	Maj	oping	Dri	lling	a 1'	
Mineral/ District	Area/ Block	Scale	Area (sq. km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
GSI Base Metal							
Palamau	Sokra-Chando area	-	-	-		_	Hornblende biotite granite gneisse garnet biotite gneiss, foliated alkal feldspar granites and its coarse grained variety were the major roc types found in the area of investigation. Exposures of amphibolite, calcsilicate, an ferrugenous quartzite were found a places in small patches. Sma occurrences of Kyanite-magniti schist, dolomite and graphite alon with quartz veins were found in th area. Rocks of the area were see mylonitised at several place inferring there by the presence of shear zone. Garnet biotite gneiss wa found to be the most deformed roc overlained by hornblende biotiti granite gneiss. Calcsilicate Ferrugenous Quartzite/Amphibolit have wavy erosional contact wit biotite hornblende granite gneiss Foliated alkali feldspar granite wa seen to have intrusive contac Kyanite-Magnetite Schis Dolomite and graphite with quart veins were seen associated alon

Table –3 (contd)

Agency/	Location	Map	oping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							shear planes and have sheared contact with other rocks. Mineralisation was found in the form of en-echelon hydrothermal veins mostly associated with calc- silicate (magnetite mineralisation) and quartz veins (graphite mineralisation). It is mostly associated with NE shear planes and associated with NE shear planes and dolomites quarries are found in the are were exhausted at local level for use in iron industries.
REE, Rare M Palamu	Metals and associat Sildag-Chhatarpur -Tenpa area	-	egic mine -	-			The study area formed a part of CGGC and its regional trend varied from NE-SW to NW-SE. The major lithounits exposed in the study area were migmatites, biotite granite gneiss (± garnet), granite gneiss, porphyritic granite, pink granite grey granite, pegmatites amphibolites, dolerite and ultramafics. Migmatites were wel exposed in north-west and southwest part of the study area. The area like Sildag, Rudwa, etc. has wel developed exposures of migmatites south of Village Liwar, a bouldery outcrop of ultramafics has beer mapped. This ultramafic body showed NE-SW trend that laid within the migmatites. Grey granite was exposed near Village Kangalidih In these granites sulphides were observed which occurred as fracture filling and disseminations Pegmatite vein of dimension (270 x 25) m was also noted in this lithounit. The area suffered four major phases of deformation Gneissic foliation represents D2 deformation which varied from NE-SW to NW-SE due to the swerving of S2 planes and that which goin present study, no significant mineralisation was observed it and chalcopyrite grains were seer alligned along the gneiss. During the present study, no significant mineralisation was observed it analytical result of 52 BRS, 20 PTS 52 stream sediment samples and 26 panned concentrate samples

Agency/	Location	Maj	oping	Dri	lling	C	D and a day
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							were received. In bedrock samples maximum concentration of 2,45 ppm of SREE was recorded east of Village Basdihar in migmatites rock Whereas in panned concentrat sample, maximum value up-t 9,000 ppm is obtained south east of Village Sildag in migmatite terrain
Hazaribagh	Darudih, Jharpo and Banhe areas						The area exposed rocks of Unclassified Metamorphics represented by calc-silicate, calc amphibolite, gneissose amphibolit and amphibolite; and granite gneiss suites of CGC, represented b granite gneiss, migmatite-gneiss garnet bearing granite gneiss hornblende gneiss and quartzo feldspathic gneiss. These rocks wer seen invariably intruded by youngs intrusives such as pegmatite, aplit and quartz vein. The area was see with subdued topography and largel peneplain supporting cultivation The exposures were limited alon the major river sections. Fron NGCM data and field conditions appears that the REE/RM mineralisation is of secondary origi and is concentrated within th weathered profile. The orientatio sampling carried out at seve locations indicated that the 'B horizon and -120 mesh fractio were more accommodative for RE concentration than the 'C' horizor In the most promising site at SV part of the study area, a systemati grid-based colluvial sampling wa carried out at 500m interva covering 12 sq. km area. In this par a number of weathered pegmatite bodies were present. The area als accommodated many linear pegmatite bodies along and across the Siwane nadi. The analyticar results of 30 BRS samples showe that the tREE values in pegmatite ranged from 40 ppm to 1,124 ppm in migmatite gneiss from 77 ppt to 999 ppm and rest other showe very low values. The tREE value for 44 colluvial samples collecte from Bhandarbar and Hatwe area i the south it ranged from 1,546 ppt to 1,854 ppm. The REE-bearin mineral phases were identifie included xenotime, monazite

Agency/	Location	Maj	oping	Dri	lling	C 1'	D. 1
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							zircon and a few apatite. A few REE bearing mineral phases, such a monazite, zircon, allanite and apatite were observed in thin sections of hornblende gneiss, cal silicate, gneissose amphibolite and migmatite gneiss.
Palamu	Chhotanagpur						The CGGC within the study are containd various gneissi components, different granitoi components along with mappabl units of Unclassified Metamorphics The younger quartz veins pegmatite veins etc. intruded int CGGC were documented, and thes were formed during differer tectono-magmatic events experiences by the CGGC during it evolution. The gneissic roc included migmatite gneiss along wit gneissose granite, gneissos biotite- granite and gneissos hornblende-biotite-granite The granitoid rock ha various components lik granite, granodiorite quartz syenite. The unclassifie metamorphic included the enclave of calc-silicate and hornblende schist. Evidences of three phases of deformation were observed i various structural fabrics of th mapped area. For REI mineralisation various intrusive lik granite and different generation of pegmatite veins were targeted. Th pegmatites were observed mostly a the north-western part of the stud area around Kusumahi and Baghma villages, were quite thick (maximur up to 50 m) and had length (up t 1.5 km). While the mica-bearin pegmatites were found mostly in th central and southern part of th study area, south of Gobardha an Samda villages which were of relatively smaller dimension. Th part analytical results received til date of the BRS and PTS sample collected from these pegmatites and younger granitoid intrusion did not REE (SREE). The maximum SREI value for the BRS sample was up t 438 ppm (in the gneissos granite and for the PTS samples, th maximum SREE value was up to 58

Agency/	Location	Maj	pping	Dri	lling	a	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							ppm (in the pegmatite vein). In the stream sediment samples only one sample showed SREE value of 1232 ppm. All these values of SREE in the available analytical results of various sample media did not show any anomalous values worthy of any economic significance.
Palamu	Bangasi - Chhotahasa area						Large-scale mapping revealed that study area is dominated by felsio orthogneisses which contains enclaves of metasedimentary, Felsio granulites, Anorthosite, sillimanite garnet-schist, mafic rocks and younger intrusive (Pegmatite syenite and quartz veins). The lithology of the study area has beer classified into three major subdivisions viz. (a) Unclassified Metamorphics (b) Chhotanagpun Granite Gneiss Complex and (c Younger Intrusives; The gneissic component of CGGC encompasses migmatite gneiss, quartzo feldspathic gneiss and hornblende- biotite gneisses. The trend of gneissic foliation of the granitic gneiss varies from WNW-ESE to NE-SW with a moderate to steeply dip towards south. Two different phases of pegmatite unit have been marked based on their disposition and trend pattern. The pegmatite veins were seen mostly occurring as concordan and discordant veins and were sporadically present in the northerr part of the study area only. The NE- SW trending Pegmatite-I unit was intruded along S3 foliation Similarly, the NW-SE trendingPegmatite-II unit was obesrved to be rich in potash feldspar. The concentration o allanite was observed in the centra part of unit around Sukri PF. Around Village Paparwaghat magnetite was seen associated with pegmatite unit Syenite unit was exposed in the southern part of mapped area whereas the northern part was exposed with pegmatite unit. The bedrock samples were concentrated from the younger intrusive only. If the west of Chothasa, an excavated whereas the northern part was exposed with pegmatite unit. The bedrock samples were found to be quite variable in character ranging from fine-grained to porphyritic

STATE	REVIEWS	

Location	wiap	ping	Drı	lling	G 1.	
Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Remarks Reserves/Resources estimated
						varieties containing feldspar phenocrysts of lmm to 3cm max. size. The colour of granites varied from greyish to buff white. Two types of granite were observed around Talapara and south of Village Baranw. Mafic intrusive in the form of gabbro/diorite were seen intruded in the gneissic country rock. The study area suffered three phases of deformation. Wall rock alteration in the form of epidotisation, silicification & ferruginisation and kaolinisation was also recorded in the study area. Analytical result of Rb value ranged from 2.85ppm to 1,236ppm. The total REE content in BRS samples ranged from 8.05ppm to 623.90ppm. Analytical results of Rb in pegmatite PTS samples ranged from 6.30ppm to 1,567ppm. The total REE content in PTS samples varied from 6.30ppm to 869ppm.
Pihra area	1:12500	100		_	340	An area of 100 sq. km was mapped on 1:12,500 scale and collected 100 bedrock samples, 100 pitting and trenching samples, 100 soil samples for chemical analysis were collected and 15 petrographic studies and 25 heavy mineral studies to assess the potentiality of Rare metal and REE in the study area were undertaken. The area of investigation lies in the southernmost part of the Bihar Mica Belt (BMB). Major part of the study area was covered by the Metamorphic of Bihar Mica Belt whereas the rocks of CGGC were exposed in SE and NE part of toposheet. Central and NW parts of the study area were covered by Quaternary alluvium of Pleistocene to Holocene Age. Mica schist, Quartz mica schist and quartzite form the part of Bihar Mica Belt. Pegmatite, quartz veins and granite were the intrusive bodies. The BMB appears to be a nearly E-W trending anticlinorium with several subsidiary folds. The granite was seen mostly intruded into the cores of the larger anticlines and has parental association with pegmatite which they resemble in composition. In the studied area, numerous pegmatites vein with variable dimensions were emplaced along the joints, fractures, foliation,
		Block Scale	Block Scale Area (sq km)	Block Scale Area No. of (sq km) boreholes	Block Scale Area No. of Meterage (sq km) boreholes	Block Scale Area No. of Meterage (No.) (sq km) boreholes

Agency/	Location	Map	oping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							were oriented along N-S to NW-SE and NE-SW to E-W. These pegmatites were emplaced within all the rock types of the area. The pegmatites appeared very coarse- grained with quartz, feldspar (both orthoclase and plagioclase), muscovite as major constituents with minor amount of biotite, garnet and tourmaline at places. These pegmatites also contained beryl, columbite-tantalite and ilmenite, as accessory. Megascopically, a few of these pegmatites were of zoned type where a well-developed quartz core was found in the middle portion of the lens and was seen surrounded by intergrowth zone of admixture of quartz and feldspar (both k-feldspar and plagioclase).
Tungsten Giridih	Kakakudar- Gaganpur area	-	-	-	-		Geologically, rocks of the Unclassified Metamorphics (represented by biotite schists, quartzites, tremolite-actinolite-tale schists, dolomitic marble, amphibolite/ hornblende schist and very small pockets of granulitic calc- silicate rocks), Chhotanagpur Granite Gneissic Complex (consisting enclaves of older metamorphics in the form of meta- sedimentary and meta-volcanic rocks within gneissic component) and later intrusive of dolerite, pegmatite and quartz veins form the chief litho-units of the area. Old workings (OW) for copper, lead, zinc etc. at Gaganpur, Jhalakdiha, Kakakuddar and Chandio villages (east to west respectively) occurred within the granite and/ or granite with mica-schist Scheelite specks associated with similar rock types (talc-muscovite schist, tremolite- muscovite schist, impure carbonate rock) in Chandio, Kakakuddar OW areas which were observed under UV light. Mineralisation can be correlated to skarn type in the area wherein previous sedimentary units were intruded by late granite fluxes resulting in contact metasomatism and subsequent formation of skarn minerals. The mineralisation can be inferred to be litho-controlled as primary commodity for investigation, tungsten was observed to be associated with talc- tremolite schist in close vicinity of

Table –3 (contd)

Agency/ Mineral/ District	Location Area/ Block	Maj	Mapping		lling	G 1:		
		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated	
							dolomitic marble etc. From th available chemical analytical dat significant values of coppe (3,934mg/kg), Zn (2,587mg/kg) Mo (294.31ppm) have bee observed near Kakakuddar OW. A elevated Pb value of 5,961mg/k was analysed from Trench-1 clos to Kakakuddar OW. Panned strear sediment samples collected clos to Kakakuddar OW gave Th valu of 1,229.45 ppm. Pb valu amounting to 3,752 mg/kg and A value of 3.22 ppm have bee reported near Chandio OW beside Au value as high as 0.18 ppm fror the soil sample which has bee further corroborated by value o 0.80 ppm of Au from Trench- sample. Au value of 0.43 ppm ha been analysed from tremolit schist towards S of Chandio OW The lab study is in progress.	
Graphite, Va Palamu and Latehar	nadium and asso Nawadih-Gurha area	ciated min -	erals -		_		The area can be broadly classified into three subdivisions viz. (i) Th Unclassified enclave suit (Unclassified metamorphic consisting of quartzite, calc-silicates amphibolite, graphitic quartzite ultramafite, (ii) granite gneiss migmatite gneiss and granitoids o CGC and (iii) younger intrusiv consisting of pink and grey granite pegmatite, quartz, and quartzo feldspathic veins. The dominan foliation plane in the study area wa NW-SE. The area had experience. upper amphibolite to granulite facie of metamorphism During th investigation, a total of 15 bands o graphite in form of linea continuous and discontinuous bodie were delineated. The strike lengtl of the band varied from 332m tt 1.07km and the width varied from 84m to 375m. The host rocks fo graphite mineralisation in the are were granite gneiss, quartzite an- granulite. The analytical result o 102 BRS and 100 PTS yielded 13.46% average fixed carbon. Abou 79 BRS yielded more than 10% FC So far 61 BRS for vanadium wer analysed and showed encouraging concentrations in the range of 7. to 4859 ppm and the average wa 782 ppm. Seventeen samples out o 61 yielded more than 1,000 ppm o vanadium which is very close to th present cut- off value.	

Agency/	Location Area/ Block	Maj	pping	Dri	lling	Sampling (No.)		
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage		Remarks Reserves/Resources estimated	
Palamu	Adhmaniya block						The area exposed rocks of i Unclassified Metamorphics, ii) Chhotanagpur Gneissic Complex and iii) acid and basic intrusive that were intruded in different rock types. The host rocks for mineralisation in the area were graphite-bearing sillimanite schiss and granite gneiss. The graphite mineralisation was in the form of lenticular bands disposed of in ar enchelon pattern. Two graphite schist bands trending in WNW-ESE were delineated. The southern band was 700 m in length with a moderate dip southwesterly. The northerr band was bifurcated into two branches having an approximate strike length of 200m and 650m dipping moderately towards the southwest. The ground geophysica survey (SP) of 29 LKM was carried out in this block. Two anomalous zones were delineated on the SF map. Zone-I in the southern part of the block was approx. 700m ir strike direction whereas Zone-II was swerving and branched into two parts. Graphite mineralisation was picked up well by SP anomaly. Our of the total 13 boreholes, boreholes JHPA-01, JHPA-02, JHPA-03 and JHPA-04, and JHPA-05 were drilled in the southern band of the area Proximate analysis of 55 BRS and 63 core samples were received. Fixed carbon up to 25.23 % and vanadium up to 1,359 ppm were obtained from Bedrock samples (n=55). If Borehole JHPA-01, it was weighted average of 9.57%, FC was for 63m sample length with a maximum FC up to 17.28%. In Borehole JHPA- 02, it was weighted average of 94% fC for 30m sample length with a maximum FC up to 15.1%. If Borehole JHPA-11, three enriched zones of vanadium were intersected Zone-I, Zone-II, and Zone-III were with a weighted average of 887ppm (17 m sample length) and 660 ppm (17 m sample length) and 660 ppm (17 m sample length) with a weighted average of 906 ppm of vanadium while in Borehole JHPA-13, a zone of 18m sample length with a weighted average of 906 ppm of vanadium while in Borehole JHPA-13, a zone of 18m sample length with a weighted average of 906 ppm of vanadium while in Borehole JHPA-13, a zone of 18m sample length with a weig	

Table – 4: Mineral Production in Jharkhand, 2019-20 to 2021-22
(Excluding Atomic Minerals)

(Value in ₹'000)

	Unit	2019-20			2020-21			2021-22 (p)		
Mineral		No. of mines	Quantit	y Value ^s	No. o mines		tity Value ^s	No. of mines	Quantity	Value ^s
All Minerals		54		32278813	46		30845510	44		58300177
Coal Natural	'000t	-	131763	-	-	119295	-	-	130105	-
Gas (ut.) +	m c m	-	5	-	-	2	-	-	4	-
Bauxite	t	20	1418793	1400830	19	1497472	1607332	19	1808725	2334128
Copper Ore	t	-	288477	-	-	41772	-	-	25834	-
Copper Conc.	t	2	7660	604135	2	1208	23707	2	-	-
Gold Ore	t	-	4807	-	-	2859	-	-	3682	-
Gold	kg	1	18	64689	1	11	53310	1	12	56268
Iron Ore Manganese	'000t	21	25015	29411760	17	21434	28520399	16	24728	55467888
Ore Graphite	t	2	4785	36126	-	-	-	-	-	-
(r.o.m.)	t	3	21202	20661	3	5962	6069	1	21	23
Kyanite	t	-	-	-	-	-	-	1	2899	5417
Limestone Minor	'000t	5	785	339164	4	324	233245	4	72	35005
Minerals @		-	-	401448	-	-	401448	-	-	401448

Note: The number of mines excludes Fuel and Minor minerals.

\$ Excludes the value of Fuel minerals.

+ Coal-bed Methane

@ Figures for earlier years have been repeated as estimates because of non-receipt of data.

Table – 5 : Principal Mineral-based Industries

Industry/plant Capacity		Table - 5 (contd)			
Industry/prant	('000 tpy)	Industry/plant	Capacity ('000 tpy)		
Alumina		Chemicals	(10)		
Hindalco Industries Ltd, Muri.	450 KTPA	Bihar Caustic & Chemicals Ltd. 92.75			
Asbestos Products		Garhwa Road, Distt. Palamu.	(caustic soda lye)		
Hyderabad Industries Ltd, Jasidih,	NA	Copper Smelter			
Distt. Deogarh.		HCL, ICC, Ghatsila,	19 (refined copper)		
Cement			5 (copper smelting)		
ACC Ltd, Chaibasa, Distt. Singhbhum.900ACC Ltd, Sindri, Distt. Dhanbad (G).2350			8.5 (copper cathode)		
		84 (fabricated wire ba $54(H_2SO_4)$, 390 t (NiSC			
		54(11	$480 \text{ kg (CuSO}_4)$		
Bokaro Cement Plant (formerly JV of	2100	14.6 kg (selenium)			
Jaypee Cement & SAIL), Bokaro (G).		9868 k	g (Ag), 698 kg (Au)		
Lafarge, Jojobera, Distt. Singhbhum.	4600				
Burnpur Cement Patratu Ramgarh	300	Foundry			
		Grind chem, Adityapur	15 (Foundry fluxes)		
Ceramic		Jharkhand Grid chem Pvt. Ltd,	25 (Foundry fluxes)		
Maithan Ceramics Pvt. Ltd, Dhanbad.	80	Adityapur, Gamharia	- /		
	(contd)		(contd)		

Table - 5 (contd)

Table - 5 (concld)

Industry/plant	Capacity ('000 tpy)
Iron & Steel	
Bokaro Steel Plant, Bokaro	6900 (sinter) 4585 (pig iron) 4500 (Crude/liquid steel) 35.5 (H ₂ SO ₄) 27.2 (ammonium sulphate)
Tata Steel Ltd, Jamshedpur	6000 (pellets) 8000 (sinter) 10550 (Pig Iron) 13000 (Crude/liquid steel)
Usha Martin Ltd, Jamshedpur.	500 (Sponge iron) 1200 (pellets) 715 (sinter) 1000 (Liquid/ crude Steel)
Pellet Orissa Manganese & Minerals Ltd. Kandra, Sarai Kharsawan.	, 1600 (pellets)
Pig Iron Atibir Industries Pvt. Ltd, Bhorandiha, Giridih	600 120 (Sponge iron) 680 (sinter)
Elcctrosteel Steels Ltd, Siyal Chandan Kiyari	Jori, 1500
Sponge Iron Anindita Steel Ltd, Senegarha Rabodh	120
Ashirwad Steel & Industries Ltd, C Jamshedpur.	Gamharia, 72
Bihar Sponge Iron Ltd, Chandil, Distt. Saraikela-Kharsawan.	210
Brahmaputra Metallics Limited, Kamta, Gola, Distt. Ramgarh.	105 148.5 (Semi-finished Steel)
Balmukund Sponge & Iron Pvt. L Majhaladih, Gadisrirampur	.td, 63 75 (Crude/liquid steel) 37 ((Pig Iron)
Chintpurni Steel Pvt. Ltd, Indra, Zarba	90 100 (Semi-finished steel)
Jai Durga Iron Pvt. Ltd, (I &II) Jhumari Tellaiya, Distt. Koderma	(36+66) =96
	(

Industry/plant	Capacity ('000 tpy)
Jai Balaji Industrial Engg. Ltd, Barajamda	120
Rungta Mines Limit Chaliyama Rajnagar	620.4
Saluja Steels & Power Pvt. Ltd, Mahtodih.	60
Satpuria Alloys Pvt. Ltd, Manjhladih	60
Shivam Iron & Steel Co. Ltd, Bandhi, Chandwara	90
Zoom Vallabh Steels Ltd, Dugdha, Distt. Saraikela-Kharsawan.	120
Ferro-alloys	
Astha Ferrotech Pvt. Ltd, Adityapur, Tatanagar	201
Anjaney Ferro Alloys Ltd, Mahijam	12
Bihar Foundary & Ccasting Ltd, Marar	36
Dayal Ferroalloy Ramgarh cantt	10
Gautam Ferro Alloys Ltd,	5.5
Shivam Iron & Steel Co. Ltd, Jambad, Udnabad	37.4 (Si-Mn)
Tin Plates The Tin Plate Co. of India Ltd, Jamshedpur.	379
Glass IAG Co. Ltd, Bhandainagar.	360 TPD
Refractory SAIL Refractory Unit (formerly Bharat Refractories Ltd), Ranchi Road, Ramgarh.	7.5
SAIL Refractory Unit (formerly Bharat Refractories Ltd), IFICO, Ramgarh.	42
SAIL Refractory Unit (formerly Bharat Refractories Ltd), Bhandaridah, Distt. Bokaro.	26
Jharia Firebricks Pottery Works (P) Ltd, Dhansar, Distt. Dhanbad.	20
Mineral Trade Corporation Khaparsai, Chaibasa	6.6
Raj Refractory (P) Ltd, Hardag, Distt. Ranchi.	6

G; Grinding Unit

(contd)

Note: Data, for Cement Industries on respective websites, is taken from Survey of Cement Industry & Directory.