STATE REVIEWS

Indian Minerals Yearbook 2022

(Part-I)

61st Edition

STATE REVIEWS (Mizoram & Nagaland)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

July, 2024

MIZORAM

Mineral Resources

Occurrences of lignite, sandstone and pyrites are reported from the State. Major deposits of economic importance have not been reported so far in the State.

Exploration & Development

No exploration activities was reported to be carried out by any Central/State Government agency during 2021-22 in the State.

Production

No mineral production (except minor minerals) was reported from Mizoram during 2021-22. The value of minor minerals' production was estimated at ₹ 165 crore for the year 2021-22.

NAGALAND

Mineral Resources

Important mineral occurrences in the State are: **coal** in Borjan, Jhanzi-Disai, Tiesang and Tiru Valley Coalfields; **iron ore (magnetite)**, **cobalt, dunite** and **nickeliferous chromite** in Tuensang district and **limestone** in Phek and Tuensang districts (Table-1). The various coalfields and their reserves/resources are furnished in Table-2.

Exploration & Development

Details of exploration activities conducted by GSI during 2021-22 are furnished in Table-3.

Production

No mineral production (except minor minerals) was reported from Nagaland during 2021-22. The value of minor minerals' production was estimated at ₹18 lakh for the year 2021-22.

				(In million tonnes)
Coalfield	Proved	Indicated	Inferred	Total
Nagaland	9	2 2	448	478
Borjan	6	-	5	11.00
Jhanzi-Disai	2	22	109	133
Tiensang	1	-	2	3
Tiru Valley	_	-	7	7
DGM	_	-	293	293
Changki	-	-	32	32

Table - 2 : Reserves/Resources of Coal as on 1.4.2023 : Nagaland

Source: Coal Directory of India, 2022-23...

			Reserves	ves						Remaining resources	resources					
Mineral	Unit	Proved	Prob	Probable	Total	Feasibility	ity	Pre-feasibility	bility	Measured	Measured Indicated Inferred Reconnaissance Total	Inferred	Reconnai	issance		Total
		STDIII	STD121	STD121 STD122	(¥)	STD21		STD221	STD222	STD331	STD332	STD333	STD3	334	(B)	(A+B)
Chromite	000 Tonnes	- se	I	,				ı	,	ı		32	3200	1	3200	3200
Cobalt	Million Tonnes -	- səuuc	'						·	,	'		ı	5	5	S
Copper																
Ore	000 Tonnes	S N		ı					ı	ı		20	2000		2000	2000
Metal	000 Tonnes	S N	'	ı		·			ı	ı	'		15		15	15
Iron Ore	000 Tonnes	S		ı					ı	ı	5280				5280	5280
(Magnetite)																
Limestone	000 Tonnes	S N	'	ı	·	825	5				1005500	745875	75	- 17	1752200 1752200	752200
Nickel Ore	Million Tonnes -	- səuuc	ı	ı	I		ı	ı	·	ı	5		ı	ı	Ś	5
Figures rounded off.	nded off.															

Table - 1 : Reserves/Resources of Minerals as on 01-04-2020 : Nagaland

11-3

STATE REVIEWS

STATE REVIEWS

Agency/	Location	Ma	pping	Dril	ling	Sampling	Remarks
Mineral/		Scale	Area	No. of	Meterage	(No.)	Reserves/Resources estimated
District			(sq km)	boreholes			
GSI Shale Gas							
Shale Gas Kohima	Chedema-Dihoma area	1:12500	100				Reconnaissance survey for shale ga around Chedema-Dihoma are: Kohima District, Nagaland has bee undertaken to evaluate hydrocarbo potentiality of shale horizon withi Disang Formation in part of T.S 83K/02. The study area falls withi the latitudes 25°40'40"N 25°45'00"N and longitude 94°07'20"E - 94°15'00"E. Large scale mapping on 1:12,500 scale has been carried out covering 100 sq kt area. The study area forms a part of the Inner Palaeogene Fold belt of Nagaland-Manipur. The rock exposed in the area comprise of shales, phyllites, slates, siltstone and minor sandstones. The Disang (Late Eocene to Upper Cretaceou is the oldest formation. It is sul divided into Lower and Uppe Disang formations. The rocks of th Lower Disang Formation hav undergone low-grace metamorphism as evident be phyllitic shale and slate. Slates and dark grey with ubiquitor crisscrossed quartz veins. It can be easily broken into thin sheets du to well-developed foliations. Th lower Disang Formation has gradational contact with Uppe Disang Formation. Exotic corallir limestone is also observed within th dark grey shales, which are exposed on the left bank of Sedzu River. Th Upper Disang Formation argillaceous dominant an comprises alternate layers of monotonous thick sequence of dar grey to, laminated/splintery gree shale with thin interbands of bedde sandstones and siltstone. Spheroid weathering is common within th Disang shale. The arenaceous uni appreciably increase towards th upper part. To evaluate th unconventional hydrocarbo system, it is indispensable to understand various key geochemic (organic matter abundance, type ar maturity) and geological paramete (mineral composition, porosit

Table – 3: Details of Exploration Activities in Nagaland, 2021-22

Table – 3 (Contd)

Agency/	Location	Map	ping	Dril	ling	Sampling	Remarks
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
							permeability and gas content) is determine the potentiality for sha gas generation. Because of hig organic matter abundance ar stratigraphic continuity in th Disang Group, it is imperative is assess the viability of shale gap prospects in the present study are The total organic carbon (TOC) of Disang shales ranges from 0.02% 0.66% mg/g (av. 0.347 mg/g suggesting poor to fair generatir potential. The S1 concentration ranges between 0.01 and 0.04 mg (avg. 0.018 mg/g) and S2 concentration ranges between 0.00 to 0.32 mg/g (avg. 0.107 mg/g). Th rock-eval parameters reflect th the Disang shales have poor generative potential. The plot of TOC vs. Hydrogen index (HI) of the seven shale samples indicate that one sample of Upper Disar Fm. and one sample from Renji F falls under gas and oil field, on sample of Upper Disang Fm. fall under fair oil-prone field, and three samples Upper Disang Fm. fall under fair oil-prone field, and three sample of Renji Fm fall under r source field. TOC vs. S1 indicate that all the samples are characterises by autochthonous hydrocarboo The TOC vs. S2 diagram indicate that four samples Upper Disang Fm one sample of Renji Fm falls under Type-I kerogen field and one sample of Upper Disang Fm. falls under Type-I kerogen field and one sample of the Disang shale are Type-III & I dominant which are potential source of gas. The plot of HI vs. Oxyge index (OI) indicates that four samples of Upper Disang Fm. ar one sample of Renji Fm falls under Type-I kerogen and one sample of Renji Fm fall under fype II & III suggesting the kerogen of the Disang shale are Type-III & I dominant which are potential source of gas. The plot of HI vs. Oxyge index (OI) indicates that four samples of Upper Disang Fm. ar one sample of Renji Fm fall under Type II II. The Tmax vs. HI diagra indicates that three samples of Uppe Disang Fm. falls under Type II III. The Tmax vs. HI diagra indicates that three samples of Uppe Disang Fm., and one sample of Upp Disang Fm., and one sample of Wepp

(Contd)

Agency/ Mineral/ District	Location	Map	ping	Dril	lling	Sampling	Remarks
		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
							Fm falls under immature field. Th Tmax vs. PI diagram indicates tha five samples of Upper Disang Fm falls under dry gas zone and tw samples of Renji Formation fal under stains or shows. The Tmat value of the study area ranges from $427^{\circ}C - 506^{\circ}C$ and PI range between 0.15 -0.22 indicating tha the maturity of the organic matter in Disang shale falls within wid limitfrom immature to postmatur (gas generation). During the cours of large-scale mapping extensiv area of shale was delineated which could prove to be a good reserve of shale gas/oil. The low TOC (< 0.5% can be attributed to oxidation of organic matter during outcrop weathering. Therefore, drilling i warranted to obtain core sample from greater depth to establish th shale gas reserve.

Table – 3 (Concld)