

Indian Minerals Yearbook 2022

(Part-I)

61st Edition

STATE REVIEWS (Odisha)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

July, 2024

ODISHA

Mineral Resources

Odisha is the leading producer of chromite, garnet (abrasive), bauxite, manganese ore, iron ore, sillimanite, quartzite and dolomite. The State hosts the country's sole resources of ruby. It accounts for the country's 96% chromite, 93% nickel ore, 90% PGM metal, 69% cobalt ore, 51% bauxite, 44% manganese, 34% iron ore (haematite), 25% sillimanite, 24% fireclay, 23% pyrophyllite, 20% vanadium ore, 17% mica, and 10% dolomite resources. As per AMD of the Department of Atomic Energy, Odisha, accounted for 150.62 million tonnes of rutile resources.

Important minerals that occur in the State are: bauxite in Balangir, Kalahandi, Kandhamal, Keonjhar, Koraput, Malkangiri, Rayagada & Sundargarh districts; china clay in Bargarh, Boudh, Balangir, Keonjhar, Koraput, Mayurbhanj, Sambalpur & Sundargarh districts; and chromite in Balasore, Cuttack, Dhenkanal, Jajpur & Keonjhar districts. Chromite deposits of Sukinda and Nuasahi ultramafic belt constitute 95% of the country's chromite resources. Besides, coal occurs in Ib river valley and Talcher coalfield, Dhenkanal district; dolomite in Bargarh, Keonjhar, Koraput, Sambalpur & Sundargarh districts; dunite/pyroxenite in Keonjhar and Sundargarh districts; fireclay in Angul, Cuttack, Dhenkanal, Jharsuguda, Khurda, Puri, Sambalpur & Sundargarh districts; garnet in Ganjam, Kalahandi & Sambalpur districts; graphite in Bargarh, Boudh, Balangir, Kalahandi, Koraput, Nuapada & Rayagada districts; iron ore (haematite) in Dhenkanal, Jajpur, Keonjhar, Koraput, Mayurbhanj, Sambalpur & Sundargarh districts; iron ore (magnetite) in Mayurbhanj district; limestone in Bargarh, Koraput, Malkangiri, Nuapada, Sambalpur & Sundargarh districts; manganese ore in Balangir, Keonjhar, Koraput, Rayagada, Sambalpur & Sundargarh districts; Pyrophyllite in Keonjhar district; quartz/silica sand in Boudh, Balangir, Kalahandi, Sambalpur & Sundargarh districts; **quartzite** in Balangir, Dhenkanal, Jajpur, Jharsugada, Keonjhar, Mayurbhanj, Sambalpur & Sundargarh districts; **sillimanite** in Ganjam & Sambalpur districts; **talc/steatite/soapstone** in Mayurbhanj, Sundargarh & Sambalpur districts; **titanium minerals** in Dhenkanal, Ganjam, Jajpur & Mayurbhanj districts; and **zircon** in Ganjam district.

Other minerals that occur in the State are asbestos in Keonjhar district; cobalt in Cuttack & Jajpur districts; copper in Mayurbhanj & Sambalpur districts; granite in Angul, Boudh, Balangir, Cuttack, Deogarh, Dhenkanal, Ganjam, Keonjhar, Khurda, Koraput, Mayurbhanj, Nuapada, Rayagada & Sambalpur districts; lead in Sargipalli area, Sundargarh district; mica in Sonepur district and nickel in Cuttack, Keonjhar & Mayurbhanj districts. Occurrences of ruby and emerald are reported from Balangir and Kalahandi districts, respectively. Platinum Group of Metals occur in Keonjhar district; silver in Sundargarh district; tin in Koraput & Malkangiri districts; and vanadiferous magnetite occurs in Balasore & Mayurbhanj districts (Table-1). The various coalfields along with their reserves/resources are given in Table - 2.

Exploration & Development

The details of exploration activities conducted by GSI for gold, diamond, iron ore, manganese ore, coal & REE and other minerals during 2021-22 are furnished in Table - 3.

Production

The important minerals produced in the state during 2021-22 were Coal, Bauxite, Chromite, Iron Ore, Manganese Ore, Graphite and Limestone etc.. The value of minor minerals' production was estimated at ₹ 147 crore for the year 2021-22. The number of reporting mines in 2021-22 was 128 in case of MCDR minerals. (Table-4).

				(In million tonnes)
Coalfield	Proved	Indicated	Inferred	Total
Total	52046	37536	4936	94519
Ib-River	17506	20096	2228	39830
Talcher	34540	17440	2708	54689

Table - 2: Reserves/Resources of Coal as on 1.4.2023: Odisha

Source: Coal Directory of India, 2022-23.

			Reserves							Ren	Remaining Resources	urces		T _{oto} T
Mineral	Unit	Proved	Prol	Probable	Total	Feasibility		Pre-feasibility	Measured	Indicated	Inferred	Reconnaissance	E	resources
			STD121	STD122	(Y)	117018	STD221	STD222	166018	51 D332	510333	S1D334	(g)	(A+B)
Asbestos	Tonne	ı	ı	ı	ı	ı	ı		10000	37200	9500		56700	56700
Bauxite	000' Tonnes	388184	7346	14210	409740	97550	56160	193301	161842	428849	596940	112642	1647284	2057024
Chromite	000' Tonnes	40453	15229	22349	78031	52215	10146	44289	1565	52304	59284	20435	240237	318269
Cobalt	Million Tonnes	- Si	·						31		ı		31	31
Copper														
Ore	000' Tonnes						ı		1340	2306	8345		11991	11991
Metal	000' Tonnes	ı	ı	ı	ı	ı	ı	ı	20.63	20.14	56.26	I	97.03	97.03
Garnet	Tonne	8330045	ı	1	8330046	5		1	ı	ı	348001	829311	1177318	9507364
Graphite	Tonne	'	ı	2838414	2838414	6371790	2889564	2927932	696021	838841	3119932	298628	1714270719981121	9981121
Iron Ore (Haematite)	000' Tonnes	1817247	328296	653206	2798749	1662944	1068654	770861	28824	925717	2019410	134173	6610582	9409331
Iron Ore (Magnetite)	000' Tonnes	ı	ı	ı	ı	79	ı	120	ı	ı	43	I	242	242
Lead-Zinc Ore	re													
Ore	000' Tonnes	'	ı	ı	'		961	119	ı	ı	670	ı	1750	1750
Lead metal	000' Tonnes	'	·	•	'		34.32	4.25	ı	'	38.39		76.96	76.96
Limestone	000' Tonnes	388084	67346	13150	468580	156898	456006	260485	139924	239877	435449	38785	1727424	2196004
Manganese	000' Tonnes	7535	1511	2423	11470	39091	22916	33968	10260	12219	32657	8947	160058	171528
Ore														
Nickel Ore	Million Tonnes	- Si	'	'		ı	21	21	31	51	51	ı	175	175
Pt. Group	Tonne	'	·		'				·	7.7	6.5		14.2	14.2
Of Metals														
Rare Earth	Tonne			•	'		•		·	6353	19140		25493	25493
Elements														
Ruby	Kilogram	·	·	·	·	·	429	3296	ı	ı	1623	ı	5349	5349
Sillimanite	Tonne	5640985		'	5640985			6557013			4943600	561595	1206220817703193	7703193
Silver														
Ore	Tonne	ı	ı	ı	ı	ı	960500	119000	I	ı	670000	I	1749500	1749500
Metal	Tonne	I	·	ı	I	·	27.34	3.4	ı	I	34.17	ı	64.91	64.91
														(conta)

Table - 1: Reserves/Resources of Minerals as on 1.4.2020: Odisha

STATE REVIEWS

^	
Ċ	5
-	
<u> </u>	
0	
6	5
S	
୍ୱ	
\sim	-
· · ·	
0	<u>،</u>
~	
<u> </u>	
α	2
Tabl	
ι.	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Reserves		I					Ren	Remaining Resources	urces		Total
STD12 (A) STD211 STD221 STD221 STD221 STD221 STD222 STD212 STD212 STD214 STD211 STD211 STD212 STD214 Color STD212 STD214 Color STD212 STD213 STD12 STD212 STD212 STD213 STD12 STD12 <th< td=""><td>Unit Proved</td><td>Proved</td><td></td><td>Prob</td><td></td><td>Total</td><td>Feasibility</td><td>Pre-fea</td><td>sibility</td><td>Measured</td><td>Indicated</td><td>Inferred</td><td>Reconnaissan</td><td>ce Total</td><td>resources</td></th<>	Unit Proved	Proved		Prob		Total	Feasibility	Pre-fea	sibility	Measured	Indicated	Inferred	Reconnaissan	ce Total	resources
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111 016			STD121	0122	(Y)	117/110	STD221	STD222	100010	700010	CCC/110	+00010	(q)	(d+A)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1												
73.91 512.47 27.59 $ 22.2$ 16.56 $-$ - - - 950000 2196933 48612331 1259798 $-$ - 1220000 - - 950000 2196933 48612331 1259798 $-$ - 1220000 - - 950000 3412795 $ -$ - 2135 - - 487.2 10935.74 $ -$ - - - - 33300 303491 47456 $-$	Tonne -						12749	653	40		1166			15618	15618
950000 2196933 48612331 1259798 : - 1220000 232000 3412795 - - 2135 487.2 10935.74 - - 2135 39300 303491 47456	Tonne -			·		'	73.91	512.47	27.59		22.2	16.56	ı	652.73	652.73
- 1220000 232000 3412795 - - 2135 - 487.2 10935.74 - 39300 303491 47456	Tonne 12654141	12654141		·	- 120	654141				950000	2196933	48612331	1259798 5	530190626	5673202
- 1220000 232000 3412795 - - 2135 - 487.2 10935.74 - 39300 303491 47456															
- 2135 487.2 10935.74 - 39300 303491 47456	Tonne -					'		1220000		·	232000	3412795	ı	4864795	4864795
39300 303491	Tonne -	•				'	•	2135			487.2	10935.74	ı	13557.94	13557.94
	Tonne 476672	476672			7 -	476672	,				39300	303491	47456	390247	866919
	igures rounded off.														

Drilling Agency/ Location Mapping Mineral/ Remarks Area/ Sampling District Block Scale Area No. of Meterage (No.) Reserves/Resources estimated (sq km) boreholes GSI Manganese Ore Keonjhar Kendudihi-24 1163.75 A total of 1,163.75 m has been drilled Parulipada from 24 of boreholes at 100 m x 100 m grid interval. Analytical Block results of borehole OKKP-1, 2, 3, 4, 5, 8, 9, 11, 14, 15, 16, 18, 19, 21, 25 and 26 show, the cumulative Mn ore zone is 1 m, 2.40 m, 5.10 m, 13 m, 6.70 m, 2 m, 2.30 m, 1.50 m, 1.8 m, 3.5 m, 7 m, 0.5 m, 1.60 m, 1 m, 5.2 m, 2.10 m thick having 10.53%, 12.40%, 10.17%, 16.57%, 14.09%, 11.86%, 12.36%, 13.24%, 13.42%, 13.86%, 10.90%, 10.10%, 12.31%, 29.09%, 14.08%, and 15.26% of Mn respectively. Analytical results of core samples from 24 boreholes show that the width of mineralized zone varies from 0.50 m to 13.00 m with an average grade of 13.53% of Mn. Petrography study of ore samples show the Mn ores are psilomelane and pyrolusite. The manganese ore occurs in discrete isolated pockets/ lenses in form of powdery and pisolitic ore hosted in shale. No correlation of mineralized zones is observed between adjacent boreholes drilled during FS 2021-22. The mineralized zones are occurred as small isolated pockets. The manganese ore zones are occurring at different depths with different thickness. The exploration was is continued during FS 2022-23 with a total drilling target of 4800 m and detailed geological mapping of 0.6 sq. km. Uchhabapalli-386 2.05 The major lithounits in the block Balangir Thakurpalli are khondalite (quartz - feldspargarnet-sillimanite+graphite schist/ Block gneiss), calc-silicate rocks (calc gneiss and calc-granulite), quartzite, and late intrusives include pegmatite and quartz-veins. General strike varies from NNE-SSW directions with sub-vertical dip towards east in Thakurpalli block in the south to NW-SE directions in Uchhabapalli area in the north. The area has un-

STATE REVIEWS Table –3 : Details of Exploration Activities in Odisha, 2021-22

dergone polyphase deformation. The Mn ore occurs within shallow synformal structure of the calc-sili-

Agency/	Location	Map	ping	Dri	lling	G 1.	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							cate rock. A total 2.05 sq. km. de- tailed geological mapping is carried out in the block alongwith 55 cu. m Pitting / trenching. The average grade of channel sample is 15.95% Mn. A total 386 m drilling has been carried during FS 2021-22. All the boreholes intersected mineralized zone with cumulative thickness 2 m to 15 m except ODUT-3 and the strike length of mineralized zone is approximately 2700 m in Uchhabapalli-Thakurpalli area.
Gold Keonjhar	Gopur Block	1:1000	1.5	9	1563.15	-	Preliminary exploration for gold in Gopur Block was carried out with a total drilling of 1563.15 m and 1.5 sqkm detailed mapping in 1:1000 scale. The area belongs to Iron Ore Group exposing meta- volcanics (Pillowed metabasalt & pyroclastic). Exposures of quartz – sericite schist in Sankarkhol hill (In the southern part of the block) also observed. Gold mineralisation in the IOG is associated with zone of in- tense silicification and hydrother- mal alteration within the metabasalt. The IOG rocks are over- lain by gritty sandstone and con- glomerate containing clasts of quartz, meta-chert, and quartzite and observed as capping on the Sankarkhol hill and in the south- eastern part of Sankarkhol Hill. Palaeoplacer rich in gold and ura- nium mineralisation is recorded in this siliciclastic sediment in its type area near Mankarchhua. Two NNE- SSW trending subparallel auriferous lodes have been delineated in the exploration area. The NNE-SSW trending central lode has been probed with 9 boreholes with 100 m spacing. Among which sulphide mineralisation zone is encountered in eight boreholes (OKG-1 to OKG- 7 and OKG-9). In the southern part, there is another lode, where four first level boreholes OKG-11, OKG- 12, OKG-13, OKG-14 and one sec- ond level borehole OKG-16 was drilled with 100 m spacing. Among which sulphide mineralisation zone

Tabl	le - 3	(contd)
------	--------	---------

Agency/	Location	Maj	oping	Dri	lling	G 1'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							is encountered in three boreholes (OKG-11, OKG-12 and OKG-16). The sulphide mineralisation zones observed in boreholes drilled for central lode is, 1) OKG-1, 64.25- 77.25 2) OKG-2, 59.92-79.29 mts 3) OKG-3, 70.85-73.00 mts & 81.7-84.85 mts 4) OKG-4, 69.41- 77.23 mts) OKG-5, 46.7-51.5 mts 6) OKG-6, 70.8-71.63 mts & 77.4- 78.35 mts 7) OKG-7, 82.7-85.7 mts 8) OKG-9, 49.1-53.4 mts, 95.00-95.93 mts & 126.90-128.97 mts. The sulphide mineralisation zones observed in boreholes drilled for eastern lode is OKG-16, 149.60- 155.60 mts. The sulphide mineral- isation such as pyrite, arsenopyrite, very few chalcopyrite and gold (ob- served from ore petrography study) has been observed within metabasalt with quartz, epidote and carbonate veins. The sulphide mineralisation was observed along the foliation planes and in association with quartz and epidote veins.
Diamond Bargarh	Padampur - Paikamal- Jharbandh area	-	675	-	-	-	An integrated approach to find ou primary source rock for diamond was adopted encompassing aeria reconnaissance and remote sensing studies over 675 sq. km area, study of lineament tectonics and aero-magnetic map of the area with delineation of anomalous zones geological traverses along the suspected zones such as Craton- Mobile Belt boundary followed by stream sediment sampling from the suspected drainage networks with good trap sites. The investigation block around Padampur-Paikama area exposes lithounits of Bastar Craton, western margin of Easterr Ghat Mobile Belt (EGMB) and parts of Chhattisgarh sedimentaries. The cratonic lithounits include granite gneisses of different varieties mostly banded gneisses with mino- migmatitic and porphyritic variet- ies, quartz mica schist and mino-

Agency/	Location	Map	ping	Dri	lling	G 1.	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							metasedimentary schists. The litho units of EGMB occupy major part of the study area which include gar netiferous granite gneiss, khondlit and quartzite. The Chhattisgarh Su pergroup exposes ferruginous and khaki green shale, arenite and lime stone mostly confined to the cen- tral portion of the area in contace with both the cratonic and EGMH blocks. Digital image processing us- ing ASTER imagery along with study of NGLM data was carried out to prepare the lineament map of the area. ALOS PALSAR DEM (12.5 resolution) was used to pre- pare drainage basin and watershee map of the area. The lineament prepared were superimposed on th geological map as well as drainag map of the area to mark some im portant blocks for detailed study and sample collection. Heavy mineral such as garnet, ilmenite, spinel, zir con, amphiboles, pyroxenes and epidote were recovered after sepa ration from the stream sedimen samples. A total of 110 such sus pected heavy mineral grains wer selected for further analysis b; EPMA and SEM, of which 67 grain were selected for SEM stud ies. These heavy minerals includi 52 of suspected garnets, 16 of sus- pected ilmenites, 06 of suspected spinel, 31 of suspected diopsid grains and 05 of suspected grain which could not be identified by microscopic observation.
C opper and Mayurbhanj	associated precious Kesharpur East block	metals -	-	15	2243.55	385	A total of 2243.55 m drilling, 10 c m pitting and trenching was carrie out with collection of 335 CS, PS 10 OM, 10 XRD, 10 EPMA, 1 sulphur isotope and 10 fluid inclu sion samples for petrographic an other laboratory studies. The stud area belongs to part of the SC toposheet no. 73 J/12 located in th eastern fringe of Singhbhum shee zone (SSZ). Regionally the area exposes rocks belonging t the Singhbhum Group intruded b different phases of Mayurbhar

Agency/	Location	Мар	ping	Dri	lling	a l'	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							granitoids and dolerite. Different rock types exposed in the area are quartzite, hornblende biotite schist, augen gneiss, hornblende granite gneiss, leuco granite and dolerite with numerous quartz veins. The general strike of the lithologies vary from WNW-ESE in western part to ENE-WSW in eastern part with moderate to steep dips towards north forming a synformal structure. The surface manifestation of mineralisation in the area is in the form of old workings, malachite and azurite stains. Surface investigation trenching has been carried out along the borehole profile lines perpendicular to the strike to expose the host rock across the mineralised zone. The analytical results of trench vary from 79 ppm to 9230 ppm. During FS 2020-22, A total of 15 of boreholes have been drilled and the average thickness of sulphide zone is 40 m which varies from 15 m to 80 m. The cumulative thickness of copper lode intersected is 26.20 m. The average grade of Cu varied from 0.25% to 1.26% and thickness varied from 2.20 m to 22.65 m. The work is in progress and resource estimation will be done after receiving complete analytical results and interpretation.
Bolangir	Graphite and REE Ampali- Badipura- Saintala area	1:12500	60	6	446.0	-	During FS 2021-22, an area of 60 sq. km has been mapped by large scale mapping (1:12,500 scale) followed by 446.0 m of drilling in 06 of scout boreholes (ODBD-1 to ODBD-6) with collection of 46 channel samples, 53Pit/Trench samples, 21 Regolith samples and 37 core samples. The occurrence of lead ore as stringers and specks of galena in a brecciated quartz vein at Badipura and Jalorpadar area have been observed. The old workings near Badipura and Jalorpdar area for galena observed well within the brecciated quartz veins, on surface old working pits are of roughly 15 m X 20 m and 25 m X 20 m in dimension respectively. The

Agency/	Location	Map	ping	Dri	lling	G 1.	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
	mineralization						allanite-fluorite outcrop of about 8 m thick and about 45 m of strike length, near Bibina area has been observed, which is a potential rock hosting REEs. Channel sampling has been carried out on the brecciated quartz veins and allanite-fluorite rock and sent for chemical analysis to test its potential for basemetal and REE mineralisation respectively. The analytical results of channel samples (7 nos) of allanite rich rock shows total REE ranges from 12.60% to 14.29% and it shows an enrichment of LREE mostly La and Ce up to a value of 5.15% and 6.10% respectively while it is remarkably low in HREE ranges from 398.71 ppm to 437.32 ppm. In almost all the boreholes the brecciated zone has been intersected showing specks of sulphides mostly pyrite and few chalcopyrite. In borehole ODBD-5 a 4.75 m thick zone of allanite-fluorite-calcite has been intersected, which also shows cluster of sulphides and along fracture planes chalcopyrite and pyrite are most commonly observed. In borehole ODBD-6, a 4.0 m thick sulphide zone consists of pyrite and chalcopyrite in khondalite has been observed.
Nayagarh	Khuntapada- 1: Purushottampura area	12500	_		-	-	Reconnaissance survey for REE & RM mineralisation around Khuntapada- Purushottampura area, Nayagarh district, Odisha was taken up for LSM on 1:12500 scale along with pitting/ trenching, regolith sampling, stream sediment sam- pling and laboratory studies. The area of investigation being part of the EGMB, lithounits exposed in the area are khondalite, granite gneiss, leptynite, pyroxene granu- lite, leptynite and pegmatite. Large scale as well as detail mapping re- vealed that granite gneissic country rock is intruded by several leucocratic coarse grained to pegmatoidal syenite veins. A dark coloured pyroxenite dyke was de- lineated near Khuntapada whose intrusive nature in to the granite gneiss country rock is evident from (contd)

Agency/	Location	Maj	pping	Dri	lling	G 1	
Mineral/ District	Area/ Block	Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							straight and sharp contact between pyroxenite and country rock, cross cutting the foliation in the Granite gneiss. Xenoliths of syenite with irregular outline are found floating in the pyroxenite dykes. Titanite crystals are also found associated with the pyroxenite bodies which could be the source of REE. The petrographic studies of syenite, py- roxenite and their contact reveal that heavy minerals like alanite and titanite are present in pyroxenite and along the contact between py- roxenite and syenite which could be the possible source of REE. Ana- lytical results for regolith samples indicate that tREE content in re- golith varies from 184.90 ppm to 3847.48 ppm with an average of 782.83 ppm. Whereas, in BRS total REE varies from 84.409 ppm to 7436.458 ppm.and in stream sedi- ment samples it varies from 214.87 to 1118.19 ppm. Rubidium concen- tration in regoliths vary from 30.46 ppm to 314.23 ppm with an aver- age of 166.18 ppm. which is more than the average crustal abundance of 150 ppm in granitic rocks. After XRD and EPMA study, the mineral phases contributing for REE & RM content can be identified.
Graphite Nayagarh	Daspalla Block	-	2.3	23	1733.5	69	As a part of G-3 exploration programme, detailed mapping of 2.3 sq. km., drilling of 1733.5 m and 50 cubic metre of pitting and trench- ing work have been completed so far. The ore body (graphite) is hosted within khondalite and migmatised khondalite and graphite occurs as disseminations. The graphite is flaky in nature with greasy lustre. There are five occurrences of graphite mineralisation, near Tumandi-Narajipara area as ob- served in the quarry and pond. All the quarry sections are aligned in N-S direction. Apart from that 33 BRS samples and 36 of trench and pit samples are collected in study area as well as in the periphery of the study area. All the 69 samples are showing high values of fixed

Tabl	le – 3	6 (co	ntd)
------	--------	-------	------

Agency/ Mineral/ District	Location Area/ Block	Mapping		Drilling		G 1:	
		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							carbon (FC%). The FC value varie from 3.6% to 21.56% in trenc samples and 2.13% to 25.02% i BRS in the study area. As the graph ite body is mostly concealed be neath the surface, 1st level bore holes are planned on the N-S aligne quarry sections based on result oftrenches. Out of 23 of borehol drilled so far,20 are 1st level bore holes and 03 are 2ndlevel boreholes 410 of core samples havebeen col lected so far from 23 boreholes. A per the visual estimation of all th drilled boreholes, 26 m of graphit occurrences are delineated in bore hole no. ODT-6 from 26.5 m t 52.5 m and as per the chemical analy sis, three graphite zones are delin eated having 3.47% FC from 28 r to 38.5 m depth, 3.13% of FC from 41 m to 46 m and 3.04% of FC from 47.5 m to 53.5 m depth. A the boreholes have intersecte graphite zone is delineated in bore hole no. ODT-22 i.e. 29.5 m graph ite zone from 24.5 m to 54 r depth. As per the visual estimatio of graphite zones in all the 20 of 1st level boreholes, geological pro- file lines of 8 boreholes i.e. ODT-5 6, 7, 8, 15, 16, 17 & 22 are selecte for 2nd level drilling.
Coal Angul	Kanaloi Area,	1:10000		_	_		The detailed geological ma
	Talcher Coalfield						(1:10,000 scale) of the Kanalo area have been prepared with th help of available surface as well a projected sub-surface data. Kamth Formation, Barren Measures an Barakar Formation are exposed i the study area from south to nort direction. Outcrops of the Baraka Formation are well preserved in nal cutting section in the area wherea rocks of the Kamthi Formation ar exposed in the hillocks of th Kanaloi Reserve Forest area Kamthi Formation occurs as a overlapping sequence above eithe Barakar Formation or Barre Measures. The lithounits of Barre

Agency/ Mineral/ District	Area/ Block Scale	Mapping		Drilling		a	
		Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated	
							Measures (36.80 m-38.09 m) Barakar Formation (202.39 m t 309.10 m), Karharbari Formatio (119.80 m to 170.11m) and Talchi Formation (11.30 m to 33.30 m have been intersected downward se quentially in the boreholes. I Kanaloi area three regional coa seam zones (II, II and Combine VI VIII in ascending order) of th Barakar Formation and one regiona coal seams zone (I) of Karhabar Formation were intersected betwee the depth ranges from 30.25 m t 372.40 m in the boreholes. Bore hole-wise cumulative coal thickness was varying from 55.20 m to 95.7 m. Seam zone II and III are the mos important seam in Barakar Format tion in their regional continuity an thickness and seam zone thickness of II and III in borehole was vary ing from 36.60 m to 47.25 m an 36.85 m to 50.10 m respectively. The parting thickness betwee seam zone II and III are varyin from 11.90 m to 18.95 m. Sear zone combine VI-VIII is degener ated in TKNL-3. Coal splits sectio in Karharbari Formation are vary ing from 5.00 m to 3.96 m Exploration data in Kanaloi are has established the regional continuity nuity of thick coal seam zone a shallow (<300m) depth along 8kr along strike direction and 2 kr along dip direction which furthe enhance the prospect of open cas mining in the area. Coal samples c boreholes have been submitted t CIMFR, Bilaspur for band-by-ban as well as GCV analysis.

Table - 4 : Mineral Production in Odisha, 2019-20 to 2021-22(Excluding Atomic Minerals)

(Value in ₹'000)

			2019-20)		2020-21			2021-22	(P)
Mineral	Unit	No. of mines	Qty	Value ^s	No. of mines	Qty	Value [§]	No. or mines		Value [§]
All Minerals		130		343507062	154		303806246	128		586973477
Coal	'000t	-	143016	-	-	154151	-	-	185068	-
Bauxite	t	5	15483307	10901088	5	15565611	12424241	6	16449396	18779569
Chromite	t	20	3929260	32134395	22	2830413	21862796	18	3785625	47298073
Iron Ore	'000t	64	146637	293179734	82	104485	262035370	68	136696	514531737
Manganese Ore	t	27	537325	3161505	29	482915	1948077	20	512591	2421292
Graphite (r.o.m.)	t	5	12564	34838	6	17697	46633	6	21029	63519
Iolite	kg	2	90	579	3	16	73	3	27	191
Limestone	'000t	7	5627	1848621	7	7186	2118507	7	7059	2410646
Sulphur [#]	t	-	253697	-	-	209387	-	-	207831	-
Minor Minerals		-	-	2246302	-	-	3370549	-	-	1468450

Note: The number of mines excludes Fuel and Minor minerals.

\$ Excludes the value of Fuel minerals.

Recovered as by-product from oil refinery.

Mineral-based Industry

The present status of each mineral-based industry is not readily available. However, the important large and medium mineral-based industries in organised sector in the State are given in Table - 5.

Table – 5: Principal Mineral-based Industries

Industry/plant	Capacity ('000 tpy)
Aluminium/Alumina	
Hindalco Industries Ltd, Hirakud	215 (aluminium)
Hindalco Industries Ltd, Aditya Aluminium, Lapanga, Distt. Sambalpur	360 (aluminium)
NALCO, Damanjodi, Distt. Koraput	2275 (alumina)
NALCO, Angul	460 (aluminium)
Utkal Aluma, Rayagada	1500 (alumina)
Vedanta Aluminium Ltd, Lanjigarh, Distt. Kalahandi	2000 (alumina) 1500(Venadium)
Vedanta Aluminium Ltd, Jharsuguda, Distt. Sambalpur	1750 (aluminium)
Asbestos Products UAL Industries Ltd, Korian, Distt. Dh	enkanal NA

Table - 5 (contd)

Industry/plant	Capacity ('000 tpy)
Konark Cement & Asbestos Indus Bhubaneswar	stries Ltd, NA
Cement	
ACC Ltd,Bargarh Cement Ltd, Barg	arh 2140
Ultra-Tech Cement Ltd, Jharsuguda	(G) 2600
OCL India Ltd, Rajgangpur, Distt. St	undargarh 4000 1064(Refractory) 2900(Clinker)
OCL India Ltd, Kapilas (G). Cuttack	1350
Toshali Cements Pvt Ltd, Ampavall Distt. Koraput	i, 200
Ceramics	
Prabhu Ceramics & Minerals Pvt Lt Majhipali, Rengali, Sambalpur	d, 24(Acidic Ramming Mass) 9.6(EBT Filling Mass)
Chemical	(1211 Thing have)
Arrow Minerals & Metals Pvt. Ltd, Vejidihi, Banspal Chrome Concentrate	1.8(Manganese Oxide) 2.25(Manganese dioxide powder) 74.7
K L Resources PVT. Ltd, Sundaria, Dharmsala	74.7
	(contd)

Table - 5 (contd)

Table - 5	(contd)
-----------	---------

Capacity ('000 tpy)

9000 (pellets) 1000 (pellets)

300 (pellets)

2800

180

170

250

270

320

120

115.5

900

60

73

60

90

60

1800

300

60

105

(contd)

60 (sponge iron) 25 (M. S. ingots) 120 (Lump CLO)

Industry/plant	Capacity ('000 tpy)	Industry/plant		
Maharaja Minerals Pvt. Ltd, Soso Hatadidi	60	Jindal Steel & Power Ltd, Barbil.	90	
Anand Exports, Nimmapali, Sukinda	60	Pro Minerals Pvt. Ltd,Basantpur, Jhumpura	1	
Fertilizer		Rexon Strips Ltd, Kumakela,		
IFFCO, Paradeep	NA	Distt. Sundargarh	60 (25 (1	
Paradeep Phosphates Ltd, Paradeep	NA	Shivom Mineral Limited	120 (
SAIL Fertilizer Plant, Rourkela,	NA	Kusumdih, Koira		
Distt. Sundargarh Graphite Concentrate		Tata Steel Ltd, Kalinga nagar works, Kalinganagar, Odisha		
Pradhan Industries , Katra, Kana Lax	2.88 cmipur	Pig Iron		
Iron & Steel		IDCOL Kalinga Iron Works Ltd, Barbil,		
SAIL, Rourkela Steel Plant,	5300 (sinter)	Distt Keonjhar		
Rourkela, Distt. Sundargarh	3470(pig iron) 4400 (crude/liquid steel)	IKIW. Ltd, Matkambeda Barbil		
	85 (tin plates)	Sponge Iron		
Bhushan Power & Steel, Sambalpur	1000 (sinter) 2420(crude steel)	Action Ispat & Power (P) Ltd, Pandripath Distt. Jharsuguda	ner,	
Bhushan Steel Ltd, Dhenkanal	5625 (crude Steel) 6680(Sinter) 2200(Einiched steel)	Adhunik Metaliks Ltd, Chandrihariharpur, Distt. Sundargarh		
Jindal Stainless Steel Ltd, Kalinganagar, Gadapur	3200(Finished steel) 1000 (Stainless steel) 250 (ferro alloys)	Aarti Steel Limited, Ghantikhal, Athagarh, Cuttack		
Neelachal Ispat Nigam Ltd, Khurunti Godigotha, Sarangapur	• • •	Bhaskar Steel & Ferroalloys Pvt. Ltd, Badtumkela Rajamunda		
Gourgoina, Sarangapur	1100(Pig Iron)	Beekay Steel & Power Ltd, Uliburu, Distt	Barbil.	
	920 (crude/liquid steel) 900(Semifinised Steel)	Bhusan Steels Ltd, Meramandali, Distt. Dhenkanal		
	13 (A/S) 35(Crude Tar)	Brand Steel & Power Pvt. Ltd, Murusuan, Keonjhar		
OCL India Ltd, Lamloi, Distt. Sundargarh	120 (sponge iron) 85 (billets)	Crackers India (Alloy) Ltd, Gobardhanpur, Distt. Keonjhar	,	
Orissa Sponge Iron Ltd, Palaspanga, Distt. Keonjhar	250(Ssponge iron) 100 (steel ingot)	Dinabandhu Steel & Power Ltd, Kalinganagar, Distt Jajpur.		
Shree Jagannath Steel & Power Ltd Uliburu Barbil	115.5 (Sponge iron) 112.86(M S billets)	Ganesh Sponge Pvt Ltd, Krushnachandrap Distt. Angul	ur,	
Visa Steel Ltd, Kalinganagar, Distt. Jajpur	225 (pig iron) 300 (sponge iron) 500 (special steel)	Jay Iron & Steel Ltd, Balanda, Rourkela, Distt. Sundargarh		
Tata Steel Ltd Duburi Sukinda	3200(pig iron) 3000 (crude/liquid steel)	Jindal Steel & Power Ltd, Nisha, Dist. Angul		
Manhole Cover Utkal Modular,	5750 (sinter) 10.752(GI. Manhole	Kamaljit Singh Alluwalia Steel & Power D Barpada, Barbil	iv.	
Cover) Kaurmundu Pellet	2.73(DI. Manhole Cover)	L. N. Metallics Ltd, Sripura Jharsuguda		
Pellet Arya Iron & Steel Co. Pvt Ltd, Barbil	. 1200 (pellets)	MGM Minerals Ltd, Forest Park, Bhubane	swar	
Essar Steel Ltd, Paradip	6000 (pellets)	Rungta Mines Ltd,		
, , , , , , , , , , , , , , , , , ,	(contd)			
	(conta)			

Table - 5 (contd)	
Industry/plant Capac	ity
('000')	tpy)
Unit-I, Karakola, Barbil, Distt. Keonjhar	180
· · · · · · · · · · · · · · · · · · ·	56.5
277.2 (Semi Fin. S SMC Power Generation Ltd, Jharsuguda	200
350(Bi	
Scaw Industries Pvt. Ltd, Gundichapara, Distt. Dhenkanal	100
Sponge Udyog Pvt. Ltd, Jai Bahal, Lathikata	60
Sree Metallic Ltd, Loidapada, Distt. Keonjhar	300
Suraj Products Ltd, Barpalli, Distt. Sundargarh	36
Swastik Ispat Pvt. Ltd	45
Tata Sponge Iron Ltd, Joda, Distt. Keonjhar	465
Vikram Pvt Ltd, Tumkela, Distt. Sundargarh	60
Viraj Steel & Energy Ltd, Gurupali,	220
Rengali	
Vishal Metallics Pvt. Ltd,	60
Barahamusa, Bonai	
Yedani Steel & Power Ltd, Manitra Donagadi	60
Ferro Alloys	
Aarti Steel limited, Ghantikhal, 50 (Ferrochr	ome
Athagarh, Cuttak 200 (Finished S	teel)
Balasore Alloys Ltd, Balgopalpur, 145 (H. C. Ferro chro Distt. Balasore	ome)
FACOR, Charge Chrome Plant, Randia, Distt. Bhadrak	65
Ferro alloy Corporation Ltd, Bhadrak	75
IDCOL Ferro Chrome & Alloys Ltd, Distt. Jajpur	18
Indian Metal & Ferro alloys Ltd (Indian Charge Chrome Ltd, Choudwar	168
Indian Metals & Ferro Alloys Ltd, Therubali, 11 Distt. Cuttack	16.4
Jeypore Sugar Co. Ltd, Rayagada	22.5
Jindal Stainless Ltd, Kalingnagar, Jajpur	250
Nav Bharat Ventures Ltd, Ferro Alloys Plant, Khargprasad, Distt. Dhenkanal	75
Rohit Ferro-Tech Ltd, Kalinganagar, Distt. Jajpur	110
Sagar Mining & Metal Industries Pvt. Ltd, 3.6 (L.C. Fe/	mn)
Nayagarh, Barbil 6.0 (M. C Fe/	mn)
Stork Ferro & Mineral Industries25 (Ferro chroPvt. Ltd, Somanthpur, Remuna	me)

Table	- 5 ([concl	ld)
-------	-------	--------	-----

Table - 5 (conciu)	
Industry/plant	Capacity ('000 tpy)
Tata Steel Ltd (Ferroalloys and Minerals Di Joda, Distt. Keonjhar	v.), 50.4
Tata Steel Ltd (Ferroalloys and Minerals Di Bamnipal, Distt. Keonjhar, Jhumpura	v.), 65
Tata Steel Ltd (Ferroalloys and Minerals Di Distt. Cuttack	v.), 50
Tata Steel Ltd (Ferro Chrome plant Chamakhandi.), Chatrapur	55
T.S.Alloys Ltd, Anantpur, (Rawmet Ferrous Industries Ltd), Cuttack	52
Visa Steel, Kalinganagar (Manganese oxide)	180
Refractory	
IFGL Refractory Ltd, Kalunga, Distt. Sundargarh ca	80000 pc (continuous sting refractories)
Khemka Refractories (P) Ltd, Khatukhura, Dhenkanal	35.4
Orissa Industries Ltd, Lakhikata, Distt. Sundargarh	125
Kalinga Refractories, Brundammal, Badmal, Jharsuguda	7.2 (Fire Bricks) 1.2 (F. C. Mortar)
	asic fettling Mass) .75(Basic mortar)
	g- chrome Powder) Mag- chr. Powder,
10 (1	normal) Mill scale Powder)
Orissa Industries Ltd, Barang, Distt. Cuttack	19 5 (DBM)
TRL Krosaki Refractories Ltd, Belpahar, Distt. Jharsuguda.	247.89 18 (Taphole clay)
Silicon Carbide Indian Metals & Carbide Ltd, Therubali	NA
Synthetic Rutile IREL, Orissa Sands Complex, Ganjam	100
Petroleum Refinery	
IOCL Paradeep Odisha	15000

(G): Grinding units.

Note: Data, not readily available for fertilizer and cement industries on respective websites.