STATE REVIEWS



# Indian Minerals Yearbook 2022

(Part-I)

# 61<sup>st</sup> Edition

# STATE REVIEWS (Rajasthan)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

July,2024

## RAJASTHAN

#### **Mineral Resources**

Rajasthan is the richest state in terms of availability and variety of minerals in the country and produces about 50 different minerals along with minor minerals during 2020-21. Rajasthan is the sole producer of lead & zinc ores, selenite and wollastonite. Rajasthan was the sole producer of garnet (gem) till 2004-05. Almost entire production of silver in the country comes from Rajasthan. The State is a major producer of copper ore/conc., limestone, ochre, phosphorite/rock phosphate and talc/soapstone/steatite. The State is also an important producer of marble of various shades. Makrana area is the world famous centre for marble mining.

The State possesses substantial share of the total resources of potash (94%), lead & zinc ore (89%), wollastonite (88%), silver ore (88%), gypsum (82%), ochre (81%), bentonite (75%), fuller's earth (74%), diatomite (72%), felspar (66%), marble (63%), asbestos (61%), copper ore (54%), calcite (50%), talc/steatite/soapstone (49%), ball clay (38%), rock phosphate (31%), fluorite (29%), and tungsten (27%).

Important minerals that are found to occur in the State are: asbestos (amphibole) in Ajmer, Bhilwara, Dungarpur, Pali, Rajsamand & Udaipur districts; ball clay in Bikaner, Nagaur & Pali districts; barytes in Alwar, Bharatpur, Bhilwara, Bundi, Chittorgarh, Jalore, Pali, Rajsamand, Sikar & Udaipur districts; calcite in Ajmer, Alwar, Bhilwara, Jaipur, Jhunjhunu, Pali, Sikar, Sirohi & Udaipur districts; china clay in Ajmer, Barmer, Bharatpur, Bhilwara, Bikaner, Bundi, Chittorgarh, Dausa, Jaipur, Jaisalmer, Jhunjhunu, Kota, Nagaur, Pali, Sawai Madhopur & Udaipur districts; and copper in Khetri belt in Jhunjhunu district & Dariba in Alwar district. Deposits of copper are also reported at Ajmer, Bharatpur, Bhilwara, Bundi, Chittorgarh, Dausa, Dungarpur, Jaipur, Jhunjhunu, Pali, Rajsamand, Sikar, Sirohi and Udaipur districts. Occurrence of other minerals, namely, Dolomite in Ajmer, Alwar, Bhilwara, Chittorgarh, Dausa, Jaipur, Jaisalmer, Jhunjhunu, Jodhpur,

Sikar & Udaipur districts; felspar in Ajmer, Alwar, Bhilwara, Jaipur, Pali, Rajsamand, Sikar, Tonk & Udaipur districts; fireclay in Alwar, Barmer, Bharatpur, Bhilwara, Bikaner, Dausa, Jaisalmer, Jhunjhunu & Sawai Madhopur districts; fluorspar in Ajmer, Dungarpur, Jalore, Jhunjhunu, Sikar, Sirohi & Udaipur districts; garnet in Ajmer, Bhilwara, Jhunjhunu, Sikar & Tonk districts; gypsum in Barmer, Bikaner, Churu, Sri Ganganagar, Hanumangarh, Jaisalmer, Jalore, Nagaur & Pali districts; iron ore (haematite) in Alwar, Dausa, Jaipur, Jhunjhunu, Sikar & Udaipur districts; iron ore (magnetite) in Bhilwara, Jhunjhunu & Sikar districts; and lead-zinc in Zawar in Udaipur district, Bamnia Kalan, Rajpura-Dariba in Rajsamand & Rampura/Agucha in Bhilwara district. Lead-zinc occurrences have also been reported from Ajmer, Chittorgarh, Pali and Sirohi districts. Lignite deposits are found to occur in Barmer, Bikaner, Jaisalmer, Jalore, Nagaur and Pali districts. Flux grade limestone occurs in Jodhpur and Nagaur districts and Chemical-grade limestone in Jodhpur, Nagaur and Alwar districts. Cement grade deposits of limestone are widespread in Ajmer, Alwar, Banswara, Bhilwara, Bikaner, Bundi, Chittorgarh, Churu, Dungarpur, Jaipur, Jaisalmer, Jodhpur, Jhunjhunu, Kota, Nagaur, Pali, Sawai Madhopur, Sikar, Sirohi and Udaipur districts. Magnesite in Ajmer, Dungarpur, Pali & Udaipur districts; marble in Ajmer, Alwar, Banswara, Bhilwara, Bundi, Chittorgarh, Dungarpur, Jaipur, Nagaur, Sikar, Sirohi & Udaipur districts; mica in Ajmer & Bhilwara districts; ochre in Baran, Bharatpur, Bhilwara, Bikaner, Chittorgarh, Jaipur, Sawai Madhopur & Udaipur districts; pyrite in Sikar district; pyrophyllite in Alwar, Bhilwara, Jhunjhunu, Rajsamand & Udaipur districts; quartz/silica sand in Ajmer, Alwar, Bharatpur, Bhilwara, Bikaner, Bundi, Chittorgarh, Dausa, Jaipur, Jaisalmer, Jhunjhunu, Jodhpur, Kota, Pali, Rajsamand, Sawai Madhopur, Sikar, Sirohi, Tonk & Udaipur districts; quartzite in Ajmer, Alwar, Jhunjhunu & Sawai Madhopur districts; rock phosphate in Alwar, Banswara, Jaipur, Jaisalmer & Udaipur districts; talc/steatite/soapstone in Ajmer, Alwar, Banswara, Bharatpur, Bhilwara, Chittorgarh, Dausa, Dungarpur, Jaipur, Jhunjhunu,

|                          |                         |         | Reserves | 'es            |         |                |         |                 | Remainin | Remaining Resources |                   |           |                           | Ē                 |
|--------------------------|-------------------------|---------|----------|----------------|---------|----------------|---------|-----------------|----------|---------------------|-------------------|-----------|---------------------------|-------------------|
| Mineral                  | Unit                    | Proved  | Probable | able           | Total   | Feasibility    | Pre-fi  | Pre-feasibility | Measured | Indicated           | Inferred          | Reconnais | nce T                     | resources         |
|                          |                         | 111115  | STD121   | STD122         | (A)     | 117018         | STD221  | STD222          | 166016   | 210332              | 555015            | 21D34     | (B)                       | (A+B)             |
| Apatite                  | tonne                   | ,       | 1        | '              | ı       | 1              |         |                 | 51521    | 1016000             | 1                 |           | 1067521                   | 1067521           |
| Asbestos                 | tonne                   | ı       | ı        | ı              | ı       | 1803183        | 3070449 | 4027514         | 87802    | 42101               | 4526861           | 57800     | 57800 13615710            | 13615710          |
| Conner                   |                         | •       | •        |                |         | •              | ı       | ı               | •        | •                   | 070               |           | 070                       | 070               |
| Ore                      | '000 tonnes             | 14344   | 20045    | ı              | 34388   | 13314          | 1148    | 24304           | 18603    | 197078              | 573814            | 5200      | 833461                    | 867849            |
| Metal                    | '000 tonnes             | 169.44  | 313.64   | '              | 483.08  | 33.87          | 12.2    | 136.32          | 338.66   | 1385.88             | 2214.46           | 31.13     | 4152.52                   | 4635.6            |
| Diatomite <sup>#</sup>   | '000 tonnes             | '       | '        | '              | ı       | 634            |         | •               | ı        | ı                   | 1440              | '         | 2074                      | 2074              |
| Fluorite                 | tonne                   | 6111    | '        | 11988          | 18099   | 644667         | 618802  | 759285          | 1542460  | 510656              | 1350059           | 161575    | 5587504                   | 5605603           |
| Garnet                   | tonne                   | 156938  | 50946    | 4              | 207888  | 310712         | 191094  | 33115           | 2013     | 17606               | 215120            | 73263     | 842923                    | 1050811           |
| Gold                     |                         |         |          |                |         |                |         |                 |          |                     |                   |           |                           |                   |
| Ore                      |                         |         |          |                |         |                |         |                 |          |                     |                   |           |                           |                   |
| (Primary) tonne<br>Metal | tonne                   | I       |          |                |         | I              | ı       | ı               | 4600000  | 51743000            | 69507720          | 63000     | 63000 125913720 125913720 | 125913720         |
| (Primary) tonne          | tonne                   | '       | ı        | ı              | ı       | '              |         |                 | 6.67     | 104.97              | 122.85            | 0.07      | 234.56                    | 234.56            |
| Graphite                 | tonne                   | '       | '        | '              |         | 47600          | ı       | 165920          | I        | 250000              | 1450034           | '         | 1913554                   | 1913554           |
| Iron ore                 |                         |         |          |                |         |                |         |                 |          |                     |                   |           |                           |                   |
| (Haematite)              | (Haematite) '000 tonnes | 4555    | 2280     | 479            | 7314    | 3775           | 3962    | 1132            | ı        | 11510               | 7776              | 13        | 28166                     | 35480             |
| Iron ore                 |                         |         |          |                |         |                |         |                 |          |                     |                   |           |                           |                   |
| (Magnetite)              | (Magnetite) '000 tonnes | 37631   | 136      | 83294          | 121060  | 1131           | 1023    | 85              | ı        | 3566                | 588463            | 79598     | 673866                    | 794926            |
| Kyanite<br>Lead-Zinc     | tonne                   | I       | ı        | ı              | I       | 13097          | ı       | 10606           | ı        | I                   | I                 | I         | 23703                     | 23703             |
| Ore                      | '000 tonnes             | 28791   | 63331    | 11153          | 103275  | 2485           | 19779   | 12632           | 43337    | 172985              | 328784            | 1380      | 581381                    | 684656            |
| Lead metal               | Lead metal '000 tonnes  | 503.7   | 1188.47  | 208.02         | 1900.19 | 58.48          | 405041  | 245.68          | 917.5    | 1972.47             | 5832.19           | ı         | 9431.73                   | 11331.92          |
| Zinc metal               | Zinc metal '000 tonnes  | 2356.56 | 4592.03  | 489.46         | 7438.05 | 331.22         | 992.09  | 559.35          | 3112.59  | 5052.47             | 1377.72           | 0.53      | 23827.97                  | 31266.02          |
| Lead-Zinc                |                         |         |          |                |         |                |         |                 |          |                     |                   |           |                           | 000               |
| metal                    | 000 tonnes              |         |          |                |         | 1 (            |         |                 |          | 1                   | 119.86            | 22.37     | 142.23                    | 142.23            |
| L1mestone<br>Magnesite   | '000 tonnes             | 3299838 | -        | 220062 1284254 | 4804154 | 454148<br>1030 | 1838217 | 4541298<br>2045 | 441902   | 2261727             | 12946106<br>49793 | 16/3697   | 24157095<br>54091         | 28961249<br>54091 |
| Manganese                |                         |         |          |                |         |                | -       |                 |          |                     |                   |           |                           |                   |
| ore                      | '000 tonnes             | 568     | ı        | ı              | 568     | ı              | 100     | ı               | I        | ı                   | 1690              | ı         | 1790                      | 2359              |

Table – 1 : Reserves/Resources of Minerals as on 1.4.2020: Rajasthan

STATE REVIEWS

(Contd.)

|                    |                |          | Reserves          | ves      |           |             |                   |           | Remain   | Remaining Resources                             |                        |         |                     |           |
|--------------------|----------------|----------|-------------------|----------|-----------|-------------|-------------------|-----------|----------|-------------------------------------------------|------------------------|---------|---------------------|-----------|
| Mineral            | Unit           | Proved   | Prob              | Probable | Total     | Feasibility | Pre-feasibility   | bility    | Measured |                                                 |                        |         | nce ]               | Total     |
|                    |                | STDIII   | STD121            | STD122   | (A)       | STD211      | STD221            | STD222    | STD331   | 1 STD332                                        | STD333                 | STD334  | 34 (B)              | (A+B)     |
| Potash             | million tonnes | tonnes - |                   |          |           | 1           | I                 |           | '        | 16936                                           | 3509                   | 127     | 20572               | 20572     |
| Pyrite<br>Rock     | '000 tonnes    | - sour   | I                 | '        |           | - 13667     | •                 | 22917     | 9590     | 26310                                           | 18392                  | ·       | 90876               | 90876     |
| Phosphate          | tonne          | 21845000 |                   |          | 21845000  | 0 4144961   | 13675437157933355 | 7933355   | 119833   | 69750 2                                         | 69750 28942783 9257650 | 9257650 | 72003769            | 93848769  |
| Sillimanite        | tonne          | ı        | I                 | ·        |           | - 300       | ı                 | 519       |          | ı                                               | ı                      | ·       | 819                 |           |
| Ore                | tonne          | 44124192 | 63331000 40870828 | 40870828 | 148326020 | 0 2330000   |                   | 5712218 3 | 9420000  | 1704920036712218  39420000  64730000  182142579 | 2142579                | ı       | 342383997 490710017 | 490710017 |
| Metal              | tonne          | 2150.87  | 4980.73           | 570.04   | 7701.64   | 4 172.2     | 781.85            | 531.62    | 3720.28  | 4384.86 12349.76                                | 12349.76               | ı       | 21940.57            | 29642.21  |
| Tungsten           |                |          |                   |          |           |             |                   |           |          |                                                 |                        |         |                     |           |
| Ore                | tonne          | I        | I                 | ı        |           | 1           | ı                 | ı         | '        | 963666 17000628                                 |                        | 5964000 | 23928294            | 23928294  |
| Contained          |                |          |                   |          |           |             |                   |           |          |                                                 |                        |         |                     |           |
| wo,                | tonne          | ı        | 1                 | '        |           |             | •                 | '         | '        | 1421.44                                         | 90171.5                | 2115    | 93707.94            | 93707.94  |
| Vermiculite tonne  | tonne          |          | ı                 | I        |           | - 41354     | 19960             | 4540      | ı        | 13000                                           | 16555                  | 8716    | 104125              | 104125    |
| Wollastonite tonne | tonne          | 2388641  | 190739            | 101598   | 2680978   | 8 4563016   | 1245009 8         | 8559760   |          | 3325042                                         | 2603667                | 137461  | 20433955            | 23114933  |

#### STATE REVIEWS

Karauli, Pali, Rajsamand, Sawai Madhopur, Sirohi, Tonk & Udaipur districts; vermiculite in Ajmer & Barmer districts; and wollastonite in Ajmer, Dungarpur, Pali, Sirohi & Udaipur districts.

Other important minerals that occur in the State are: apatite in Udaipur & Sikar districts; bauxite in Kota district; bentonite in Barmer, Jaisalmer & Jhalawar districts: **corundum** in Tonk district; diatomite in Barmer & Jaisalmer districts; emerald in Ajmer & Rajsamand districts; fuller's earth in Barmer, Bikaner & Jodhpur districts; gold in Banswara, Bhilwara, Dausa, Sirohi & Udaipur districts; granite in Ajmer, Alwar, Banswara, Barmer, Bhilwara, Chittorgarh, Jaipur, Jaisalmer, Jalore, Jhunjhunu, Jodhpur, Pali, Rajsamand, Sawai Madhopur, Sikar, Sirohi, Tonk & Udaipur districts; graphite in Ajmer, Alwar & Banswara districts; kyanite & sillimanite in Udaipur district; manganese ore in Banswara, Jaipur & Pali districts; potash in Jaisalmer & Nagaur districts; silver in Ajmer, Bhilwara, Jhunjhunu, Rajsamand, Sikar & Udaipur districts; and **tungsten** in Nagaur & Sirohi districts (Table -1). District-wise reserves/resources of lignite in the State are provided in Table-2.

Deposits of **petroleum** are located in the Bikaner-Nagaur and Barmer-Sanchore basin and those of **natural gas** in Jodhpur and Jaisalmer basins in the State.

#### **Exploration & Development**

The details of exploration activities conducted by GSI for Gold, Emerald, Limestone, Manganese ore, base metals (Cu,Pb & Zn), Rare Earth Elements, Tungsten, Rare Metal and other minerals during the year 2021-22 are furnished in Table - 3.

#### Production

Production of different type of of minerals have been reported from the state of Rajasthan. The value of minor minerals' production was estimated at ₹11780 crore for the year 2021-22. The number of reporting mines in Rajasthan was 91 in the year 2021-22 in case of MCDR minerals (Table-4).

#### Table – 2 : Reserves/resources of Lignite as on 1.4.2023 : Rajasthan

(In million tonnes)

|                     |         |           |          | ()      |
|---------------------|---------|-----------|----------|---------|
| District            | Proved  | Indicated | Inferred | Total   |
| Total               | 1203.85 | 3108.55   | 2273.84  | 6586.24 |
| Bikaner             | 560.30  | 230.33    | 309.19   | 1099.82 |
| Barmer              | 495.23  | 2509.46   | 1555     | 4559.69 |
| Jaisalmer & Bikaner | _       | -         | 11.47    | 11.47   |
| Jaisalmer           | _       | -         | 70.44    | 70.44   |
| Jaisalmer & Barmer  | _       | -         | 13.80    | 13.80   |
| Jalore              | _       | -         | 76.08    | 76.08   |
| Nagaur              | 148.32  | 368.26    | 219.17   | 735.75  |
| Nagaur & Pali       | _       | 0.50      | 18.69    | 19.19   |

Source: Coal Directory of India, 2022-23.

| Agency/                | Location       | Maj   | oping           | Dri                 | lling    | G 1'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|----------------|-------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District   | Area/<br>Block | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GSI                    |                |       |                 |                     |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Manganese<br>Rajsamand | Negariya block |       |                 | 19                  | 710.54   |                   | Negariya block is located in Surve<br>of India T.S. nos. 45H/9&11<br>Rajsamand district, Rajasthan. Th<br>study area comprises rocks o<br>Delwara Group of Aravall<br>Supergroup of Palaeoproterozoi<br>age and Granite Gneiss of Bhilwar<br>Supergroup of Archean age<br>Lithologies exposed are brecciate<br>ferruginised quartzite with or withou<br>manganese, quartzite, calcareou<br>quartzite and intercalated phyllit<br>with minor dolomite and granit<br>gneiss exposed as basement rock<br>The rocks of this area hav<br>undergone at least four phases o<br>deformation as evident by th<br>formation of cleavage planes in<br>different lithounits and later affecte-<br>by ductile and brittle deformation<br>in the form of shearing and fault<br>Dome and basin structure have beed<br>developed in the study area due to<br>intersection of third and fourt<br>phase of deformation. In th<br>mapped area, manganese bearin,<br>horizons are exposed in 3 linear hill<br>trending NS to N10°E in western<br>central and NE part. Manganese i<br>associated with brecciate<br>ferruginised quartzite. Th<br>manganese exposure on western hill<br>extends discontinuously for a strik<br>length of 900m, on central hill fo<br>a strike length of 650m and<br>northeasterly hill for a strike lengt<br>of 650m. Total 7 nos. of trenct<br>were excavated in all the three bands<br>Chemical analysis of trench -T1 ha<br>analysed 13.82 % MnO over 4m<br>trench T2 indicated 30.34 % MnG<br>over 9 m, trench no. T3 indicate<br>20.8 % MnO over 10 m, trench no<br>T4 indicated 12.51 % MnO over 4m<br>trench T3 indicated 10.17 %<br>MnO over 4m width. Total 11<br>boreholes (2 inclined and 11<br>vertical) have been drilled with tota<br>meterage of 710.54 m and th<br>exploration has been completed in<br>this block. Maximum width o<br>manganese mineralised zon<br>exposed on the surface is 35 m wit |
|                        |                |       |                 |                     |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Table –3 : Details of Exploration Activities in Rajasthan, 2021-22

| Agency/                | Location                       | Mapp    | oing            | Dri                 | lling    | G 1'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|--------------------------------|---------|-----------------|---------------------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District   | Area/<br>Block                 | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                |         |                 |                     |          |                   | average width of around 20m. The<br>maximum thickness of<br>manganiferous horizon intersected<br>in the borehole is 17m in borehole<br>RJRN-04 and average thickness of<br>manganiferous horizon is about<br>10 m. The maximum depth of<br>manganiferous horizon is up to<br>28.5 m in borehole RJRJ-09. The<br>analytical results of borehole<br>samples are yet to be received.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Gold</b><br>Udaipur | Rathri-Harmatiya<br>Khurd area | 1:12500 | 50              | -                   |          | 175               | During FS 2021-2022,<br>reconnaissance survey for gold and<br>basemetal mineralisation in Rathri-<br>HarmatiyaKhurd area of Udaipur<br>district, Rajasthan (G-4 Stage) was<br>taken up in parts of toposheet no.<br>461/1 and 46 I/5. It is covered by<br>large scale geological mapping of<br>50sq km area on 1:12,500 scale and<br>sampling. The main objective was<br>to assess the nature and potentiality<br>of gold and base metal<br>mineralisation. Bedrock and pit &<br>trench sampling have been done.<br>Geologically, the study area exposes<br>the rocks of Mangalwar complex<br>and Aravalli Supergroup. Different<br>rock types observed during mapping<br>are granite gneiss of Mangalwar<br>complex and the rocks belong to<br>Aravalli Supergroup include<br>dolomitic marble, garnet-biotite-<br>schist, calc-silicate, amphibolite,<br>metavolcanics intruded by quartzo-<br>feldspathic veins. The general trend<br>of the rocks in this area is NNE-<br>SSW to NW-SE with moderate dips<br>on NNW and SW. The basement<br>rocks have undergone four phases<br>and Aravalli rocks have undergone<br>three phases of deformation. The<br>rocks have undergone up to<br>amphibolite facies of<br>mineralisation in the area occur in<br>the form of small old workings/ pits,<br>gossanisation, ferruginisation,<br>malachite staining, silicification,<br>dissemination of pyrite grains. 100<br>nos. of Bedrock samples, 25 nos. of<br>petrochemical samples were submitted<br>in the chemical division for Au, |

| Agency/                  | Location                           | Mapp    | oing            | Dri                 | lling    | a 1:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|------------------------------------|---------|-----------------|---------------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District     | Area/<br>Block                     | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          |                                    |         |                 |                     |          |                   | basemetal, REE and trace elemental<br>analysis. Chemical analysis of<br>samples is yet to be received for<br>further studies and to conclude the<br>presence of any valuable<br>mineralisation in the study area for<br>further course of action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Udaipur and<br>Dungarpur | Bara Talav-<br>Jharap-Bori<br>area | 1:12500 | 50              | -                   |          | 190               | A large scale mapping (1:12500<br>scales) was carried out and covered<br>50 sq km area around Bara-Talav,<br>Jharap, Bori, Manpur, Matasula,<br>HarmatiyaKhurd, Bhabharanaetc<br>area of Salumber tehsil of Udaipur<br>and Aspur tehsil of Dungarpur<br>district in parts of T.S. No. 45L/04.<br>LSM work along with sampling was<br>carried out with an objective to<br>assess the nature and potentiality<br>of gold and basemetal<br>mineralisation. Geologically, study<br>area is occupied by the rocks of<br>Mangalwar complex of Archaean<br>age and Aravalli Supergroup of<br>paleo-proterozoic age. Mangalwar<br>complex is represented by the<br>banded biotite granite gneiss. The<br>banded biotite granite gneiss. The<br>banded biotite granite gneiss is<br>medium to coarse grains, dark<br>greyish to white gray in colour. The<br>banding in the gneisses is marked by<br>dark bands rich in ferromagnesian<br>minerals mainly biotite and light-<br>coloured band rich in quartzo-<br>felspathic material. Aravalli<br>Supergroup is represented by the<br>garnetiferous mica schist of Delwara<br>group and dolomitic marble of<br>Debari group. Garnetiferous mica<br>schist is fine to medium grain,<br>greenish grey to dark grey colour<br>rock with well-developed schistosity<br>planes. Porphyroclast of garnet<br>crystal are well developed in this<br>rock. Dolomitic marble of Debari<br>group is light to dark brown coloured,<br>medium to coarse grained rock. It is<br>crystalline in nature at number of<br>places. During mapping a gossan<br>zone is also identified. It is associated<br>near to the contact of dolomitic<br>marble and garnetiferous mica schist<br>around Bara-Talav area. The zone<br>has a dimension of approximately<br>400 m length and 40-50m in<br>thickness. Gossanised material is |

| Agency/              | Location        | Maj   | oping           | Dri                 | lling    | G 1'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|-----------------|-------|-----------------|---------------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block  | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                 |       |                 |                     |          |                   | exposed along the NW-SE trending<br>shear zone developed at the contact<br>of dolomitic marble and<br>garnetiferous mica schist around<br>Bara-Talav area. During the course<br>of mapping 50 cu m trenching work<br>has been carried out through 6<br>numbers of trenches. During field<br>work 100 Nos. of BRS, 30 trench<br>samples, 25 Nos. Of PCS, 30 No. of<br>petrological and 5 number of XRD<br>sample also has been collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Banswara             | Ghatiyana Block |       |                 | 11                  | 1249.00  | 242               | Ghatiyana block is located in Survey<br>of India T.S. 46 I/05 in Banswara<br>District, Rajasthan. The main<br>objective was to assess the nature<br>and potentiality of gold and base<br>metal mineralisation. The rock<br>types exposed in the study area<br>belongs to Delwara Group of Aravalli<br>Supergroup. The main lithounits are<br>phyllite, quartz albite epidote rock,<br>impure marble and quartz veins.<br>Phyllite is the most dominant<br>lithounits having well-developed<br>foliation. Central part of the area is<br>occupied by thin impure marble<br>bands and quartz albite epidote rock.<br>All the lithounits are disposed in the<br>form of NNW – SSE trending linear<br>bands with steep to sub vertical dips<br>towards WSW. The most<br>penetrative and pervasive foliation<br>is S1 oriented parallel to litho-<br>contacts represents the planar fabric<br>formed during the first phase of<br>deformation. The surface<br>mineralisation in the area is<br>manifested by malachite / azurite<br>stain, hydrothermal alterations,<br>gossans, ore grinding implements<br>and presence of fresh sulphides like<br>pyrite, pyrrhotite, chalcopyrite and<br>bornite. A number of small old<br>workings and dump sites are present<br>in the area. During FS 2021-22,<br>based on the detail geological<br>mapping and channel sampling at a<br>regular interval of nearly 100 m<br>along strike, trench sampling and<br>bed rock sampling of one surface<br>mineralisation zone (MZ-I) has been<br>delineated having the dimension of<br>nearly 1.3 km strike length and |

| Agency/              | Location                                   | Mapp    | ing             | Dri                 | lling    | Come 1            | D - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------|---------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block                             | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |                                            |         |                 |                     |          |                   | 6- 10 m width. Total thirteer<br>channels of the various lengths were<br>laid along the strike and a total of<br>161 channel samples, 31 trench<br>samples and 50 bed rock samples<br>were also collected. Channels are<br>showing encouraging value of<br>copper. Chemical result of channels<br>shows copper (Cu) in the range of<br>170 ppm to 2.00 % with an average<br>value of 0.23 %, while gold (Au<br>varies from <0.05 ppm to 0.23 ppm<br>with an average of 0.07 ppm. A tota<br>of eleven first level boreholes<br>(RJBGN-01 to RJBGN-11) were<br>planned at about 100m spacing to<br>intersect mineralised zones at 60 m<br>vertical depth. All boreholes were<br>planned at 45°- 50° dip and S 70°W<br>azimuth. To avoid the forest issues<br>borehole has been planned along the<br>dip from the footwall. Tota<br>1249.00 m drilling has beer<br>completed in eleven nos. of<br>boreholes. All boreholes are<br>intersected significant sulphide<br>mineralisation in the form of<br>chalcopyrite, bornite, and covellite<br>(VE= 1% to 2%). Few native copper<br>grains are also present in core<br>samples. The thickness of the zones<br>in various boreholes varies from 6<br>m to 12 m. Sulphide minerals are<br>mainly noticed in the core samples<br>of quartz albite epidote and<br>dolomitic marble rock and<br>mineralisation is mainly structurally<br>controlled. |
| Emerald<br>Rajsamand | Kalaguman-<br>Dhaneen-<br>Nathela<br>areas | 1:12500 | 100<br>100      | -                   | -        | 312<br>255        | During FS 2021-2022<br>reconnaissance survey for Emerald<br>was taken up in Kalaguman<br>Dhaneen-Nathelaarea of Rajsamand<br>district, Rajasthan (G4 Stage) and<br>in parts of toposheetno. 46H/12<br>As per the objective of the item<br>large-scale geological mapping<br>(LSM) on a 1:12,500 scale was<br>carried out in 100 sq.km. area along<br>with pitting and trenching and<br>collection of bedrock samples (BRS<br>and soil samples. A total of 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(contd)

numbers of bedrock samples, 37 numbers of petrographic samples

| Agency/              | Location       | Maj   | oping           | Dri                 | lling    | G 1'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|----------------|-------|-----------------|---------------------|----------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                |       |                 |                     |          |                   | (PS), 20 petrochemical sample<br>(PCS), and 55 numbers of pitting<br>trenching samples (PTS) have bee<br>collected to evaluate the emeral<br>mineralisation potentiality of th<br>area. Besides these, an area of<br>700 sq km was studied by<br>Photogeology & Remote Sensin<br>(PGRS) studies which includ<br>ASTER data processing an<br>alteration zone mapping. The stud<br>area encompasses Archaean (BGC<br>to Proterozoic (Aravalli and Dell<br>fold belts) rocks covered at place<br>by recent soil and alluvium<br>sediments. The Kalaguman prospec<br>is situated near the eastern margi<br>of the South Delhi Fold Belt withi<br>the basement rocks belonging to th<br>banded gneissic complex (BGC) of<br>Heron (1953). However, Naha<br>Gupta, et al. (1980, 1997) include<br>these rocks within the Araval<br>Supergroup. The Bhilwar<br>Supergroup in the study area is<br>represented by the Sandmata Group<br>Sambhugarh Formation constitutin<br>the sequence of the high-grade rocl<br>defined by Augen gneiss of<br>migmatite gneiss followed by th<br>amphibolites of the Badno<br>Formation having Archaean age<br>Aravalli Supergroup in the area is<br>represented by Devathri Formatio<br>of Dovda Group constituting of cale<br>silicate rocks of Paleoproterozoi<br>age. Delhi Supergroup in the<br>area is represented by quartite<br>of Antalia Formation, Gogund<br>Group having Paleoproterozoi<br>to Paleoproterozoic age. Mafic dykes<br>Meta basics, pegmatites, an<br>leucogranites are classified as latt<br>intrusive having Mesoproterozoi<br>to Paleoproterozoic age. Mafic dykes<br>Meta basics, pegmatites, an<br>leucogranites are classified as latt<br>intrusive having Mesoproterozoi<br>to Paleoproterozoic age. Major roc<br>types exposed in the area ar Auge<br>gneiss/migmatite/banded gneiss an<br>mica schist. Apart from these man<br>small bodies of altered mafic<br>ultramafic (tremolite-actinolit<br>schist, biotite-actinolite schist) an<br>hornblende schist/amphibolite at<br>also observed in the area. All thes<br>rocks are profusely injected b<br>pegmatite veins. The emeral |

| Table – | 3 | (contd) |
|---------|---|---------|
|---------|---|---------|

| Agency/                   | Location                                           | Mapj   | ping            | Dri                 | lling    | S                 | Dementer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|----------------------------------------------------|--------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District      | Area/<br>Block                                     | Scale  | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                    |        |                 |                     |          |                   | deposits in Rajasthan, northwest<br>India, are situated in a narrow NE–<br>SW belt in the Aravalli Mountains.<br>The studied deposits were formed<br>by the metasomatic reaction<br>between muscovite (± garnet ±<br>tourmaline) pegmatites and<br>lenticular bodies of altered ultramafic<br>rocks that are hosted by the Bhilwara<br>Supergroup gneisses (BGC). This<br>reaction produced phlogopite schists<br>containing the exometasomatic<br>emeralds, as in all other granite-<br>related emerald deposits. The<br>concentration and distribution of<br>chromium in the host rock and<br>beryllium content of the<br>hydrothermal fluids, derived from<br>the pegmatites, seem to be the most<br>significant factor for the<br>development of emeralds. Field<br>studies confirmed that a lithological<br>association i.e., schistose, mafic/<br>ultramafic intruded by beryllium<br>bearing pegmatites is a must for the<br>mineralisation of emerald, apart<br>from the lithological control and<br>structural control. So far, 200 BRS<br>samples and 55 P/T samples have<br>been submitted and 100 sq. km.<br>mapping has been successfully<br>completed. |
| <b>Basemetal</b><br>Sikar | SE Block of Ravji<br>Ki Dhani, NimKa<br>Thana Belt | 1:2000 | -               | -                   |          | -                 | A G3 stage exploration in SE Ravji<br>Ki Dhani area was taken up to<br>delineate the zones of basemetal<br>mineralisation. The area is located<br>about 16 km southeast of Nim Ka<br>Thana, Sikar district, Rajasthan<br>Detailed geological mapping has<br>been completed on 1: 2,000 scale<br>along with different types of<br>sampling. The dominant lithologies<br>are meta-sediments belonging to the<br>Ajabgarh Group and the Pratapgarh<br>Formation of the Alwar Group of<br>the Delhi Supergroup. The<br>Kushalgarh Formation is<br>represented by impure marble, mica<br>schist and quartzite. There are two<br>variants of impure marble, namely<br>micaceous marble and amphibole<br>marble. The rocks have undergond                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Agency/              | Location                | Mapp    | oing            | Dri                 | lling    | G 1'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|-------------------------|---------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block          | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                         |         |                 |                     |          |                   | three phases of deformation.<br>Copper mineralisation is observed<br>in the form of malachite stains and<br>disseminations of chalcopyrite,<br>bornite and chalcocite. At some<br>places quartz veins intruded into<br>amphibole marble along and across<br>the strike also carry disseminated<br>bornite and chalcocite. The<br>lithologies intersected along the<br>boreholes are amphibole + biotite<br>marble, biotite + amphibole marble,<br>mica schist and amphibolite. The<br>investigation has established<br>occurrence of subsurface copper<br>mineralisation, hosted by amphibole<br>marble and quartz biotite schist of<br>the Kushalgarh Formation of the<br>Ajabgarh Group. Sulphide<br>mineralisation in the drilled<br>boreholes is manifested in the form<br>of fine disseminations, specks with<br>occasional stringers, vein fillings and<br>fracture fillings of the copper ore<br>minerals, namely chalcocite,<br>bornite, chalcopyrite and<br>occasionally covellite associated<br>with pyrite. Mineralisation shows<br>either foliation parallel or cross<br>cutting relationship with the host<br>rock. |
| Alwar                | Raipur-Mundawar<br>area | 1:12500 | 50              | -                   | -        | 150               | Reconnaissance survey for base<br>metal and gold mineralisation in<br>Raipur-Mundawar area, Alwar<br>district, Rajasthan was carried out<br>covering an area 50 Sq. Km. in<br>toposheet no 54A/09. The area<br>exposes the rocks belonging to Delhi<br>Supergroup and located in North<br>Delhi Fold Belt (NDFB) of<br>Proterozoic age which hosts many<br>occurrences of base metal<br>mineralisation. Large scale<br>geological mapping of 50.0 sq. km<br>area was carried out on 1:12,500<br>scale. The lithounits exposed in the<br>study area belongs to the Delhi<br>Supergroup of rocks comprising of<br>Alwar and Ajabgarh Groups. Major<br>lithounits observed are micaceous<br>quartzite with amphibolite band,<br>mica schist, calc-biotite quartzite of<br>Kankwari formation and<br>orthoquartzite and biotite sericite<br>schist of Pratapgrah Formation of<br>(contd)                                                                                                                                                                                                                                             |

| Agency/<br>Mineral/ | Location       | Maj   | oping           | Dri                 | lling    | G 1'              | Pomorka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|----------------|-------|-----------------|---------------------|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District            | Area/<br>Block | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                |       |                 |                     |          |                   | Alwar Group. The other major<br>lithounits observed are mainly of<br>impure marble of Kushalgar<br>Formation and tremolite marble of<br>Thanagazi Formation of Ajabgar<br>Group. During the course of large<br>scale geological mapping, coppe<br>mineralisation was recorded in the<br>tremolite marble of the Thanagazi<br>Formation and Impure Marble of<br>Kushalgarh formation in the form<br>sulphides mainly chalcopyrite<br>bornite with malachite stainin<br>occurring as disseminations an<br>occasionally as thin stringers. The<br>copper mineralisation in the area of<br>litho controlled. Towards south of<br>Pehal, an old working pit (strik<br>length: 30 m, width: 20 m and<br>depth: 10 m) is demarcated in<br>tremolite marble. It shows<br>malachite staining and oxidise<br>specks of chalcopyrite. A total of<br>150 nos. of samples (BRS an<br>Channel samples) were collected<br>from 6 channels and 2 Trench lad<br>in area. The analytical result of the<br>bed rock samples indicates the<br>occurrences of different mineral are<br>in the range of Cu (<10 to 3300<br>ppm), Co (<15 to 40 ppm), Ni (<1<br>to 70 ppm), Pb (<25 to 30 ppm)<br>Zn (<5 to 10 ppm), Ag (<5 ppm<br>Cd (<5 ppm) and Au (<0.05 to 0.1<br>ppm). Two mineralised zones (MZ<br>I and MZ-II) have been delineate<br>on the basis of surface indications<br>The mineralisation in these zone<br>is observed as zones of malachit<br>staining with minor occurrence of<br>specks of chalcopyrite, pyrite<br>bornite and old working. MZ-1 if<br>observed just south of Pahel area.<br>is demarcated in impure marble an<br>tremolite marble. This zone has a<br>approximate length of 500 m and<br>width of 25 m. Total 2 channel<br>were laid in the Impure marble and<br>tremolite marble namely RM/CH<br>01 and RM/CH/02 of 10 m eacf<br>MZ-II is observed in the eastern sid<br>of Kali Pahadi area, near Ranot<br>village marked by malachite stainin<br>in calc-biotite quartzite. This zone<br>has an approximate length of 65<br>m and a width of 15 m. Total |

| Agency/              | Location       | Mapping |                 | Dri                 | lling    | Sampling          | Domorka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|----------------|---------|-----------------|---------------------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                |         |                 |                     |          |                   | Channel were laid in the calc-biotite<br>quartzite namely RM/CH/3 to RM<br>CH/6 of 15m,10m,10m and 10m<br>respectively. The analytical result<br>of the channel RM/CH1 and RM<br>CH/2 from MZ-I are encouraging<br>The Channel RM/CH/1, analysed a<br>maximum of 0.45% and minimum<br>of 20 ppm Cu. and the Channel RM<br>CH/2, analysed a maximum of 2%<br>and minimum of 20 ppm Cu. The<br>analytical results of the channel RM<br>CH4 and RM/CH/5 from MZ-II are<br>encouraging. The Channel RM/CH<br>4, analysed a maximum of 1.10%<br>and minimum of 30 ppm Cu. and<br>the Channel RM/CH/5, analysed a<br>maximum of 0.10% and minimum<br>of 165 ppm Cu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sikar                | West of Narda  | 1:2000  | 1.5             | 6                   | 1000     |                   | The west of Narda block is located<br>about 25 km east of Neem Ka Than.<br>tehsil, Sikar district, Rajasthan. Th<br>area falls in toposheet No. 45M/14<br>Geologically, the area exposes rock<br>of the Ajabgarh Group of the Delh<br>Supergroup. The exposed lithounit<br>are scapolite-bearing banded impur<br>marble of the Thanaghaz<br>Formation with tremolite and<br>actinolite and the sheared quartzit<br>of the Seriska Formation along with<br>interbanded garnetiferous quar<br>biotite schist. Apart from this<br>numerous intrusive pegmatite<br>quartz and calcite veins are also<br>present in the block area<br>Structurally, the area has undergon<br>three phases of ductile deformation<br>with the second phase o<br>deformation controlling th<br>regional topography of the area<br>During the FS: 2021-22, an area o<br>1.50 sq. km. area was mapped ou<br>1:2000 scale. A total of 06 nos. o<br>channels have been laid across th<br>scapolite-bearing banded impur<br>marble over 1000m strike length and<br>11m to 20 m width based on th<br>presence of malachite stains and<br>fresh specks of pyrite and<br>chalcopyrite. On the basis of surfac<br>anomalous values for Cu, a total 00<br>nos. of first level boreholes RJSWN<br>01 to RJSWN-06 and 01 no. second |

| Agency/              | Location         | Mapj   | ping            | Dri                 | lling    | G 1.              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|------------------|--------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block   | Scale  | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                  |        |                 |                     |          |                   | level borehole RJSWN-07 were<br>drilled to evaluate the subsurface<br>potentiality of basemetal and other<br>precious metals in west of Narda<br>block. All the boreholes intersected<br>scapolite-bearing banded impure<br>marble along with partings of biotite<br>and amphibole rich marble along<br>with quartz and calcite veins. In<br>borehole no. RJSWN-07, apart from<br>scapolite-bearing banded impure<br>marble, quartzite with bands of<br>garnetiferous quartz biotite schist<br>has also been intersected at a deeper<br>level (approx. 193m to 230m). Fine<br>disseminated pyrite, pyrrohtite,<br>chalcopyrite and bornite along with<br>fracture and vein filled pyrite and<br>chalcopyrite have been reported in<br>the boreholes. The analytical results<br>of channels WNRDCH-1 (1m x<br>0.35% Cu), WNRDCH-2 (2m x<br>0.10% Cu) and WNRDCH-4 (7m x<br>0.85% Cu) indicated anomalous<br>values for Cu. The analytical results<br>of channel nos. WNRDCH-3,<br>WNRDCH-5, WNRDCH-6,<br>WNRDCH-7 and WNRDCH-8<br>didn't show any encouraging<br>basemetal values. The complete<br>analytical results of the core samples<br>are awaited. |
| Jhunjhunu            | Pratappura block | 1:2000 | -               | -                   |          | -                 | During FS 2021-22, detailed<br>mapping on 1:2000 scale along with<br>surface sampling work and ground<br>geophysical survey was carried out<br>at East of Pratappura block. The<br>block exposes thick pile of meta-<br>sediments of Delhi Supergroup and<br>intrusive rocks. The garnet-biotite<br>schist, dolomite, quartzite of<br>Kushalgarh Formation of Ajabgarh<br>Group of Delhi Supergroup are the<br>dominant litho-units. The Ajabgarh<br>Group is represented by<br>combination of alternating<br>arenaceous, argillaceous and<br>calcareous facies rocks, among which<br>argillaceous and calcareous<br>components are dominant. Garnet<br>biotite schist exposes in the<br>maximum part of the study area and<br>comprising of large garnet (diameter<br>~4.2cm to 1cm) with biotite,<br>plagioclase, and quartz. Dolomite                                                                                                                                                                                                                                                                                                                 |

| Agency/              | Location       | Maj   | oping           | Dri                 | lling    | a 1:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------|-------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                |       |                 |                     |          |                   | is impure in nature, consists of<br>quartz, dolomite, calcite and<br>ankerite, exposes eastern margin<br>of the study area, shows elephan<br>skin weathering. Quartzite mainly<br>occurs at higher elevation in the<br>study area and characteristics of<br>yellowish white in colour, medium<br>grain, shows well developed<br>foliation planes. Amphibolite and<br>granite occur as intrusive rocks in<br>the area. Amphibolite dyke i<br>melanocratic in nature, consists of<br>mainly plagioclase and pyroxene<br>and shows typical salt-peppe<br>texture. Evidences of at least three<br>generations of deformations ar-<br>observed within the lithounits. The<br>surface evidences of mineralisation<br>are well preserved in the form of<br>malachite stain, box-worf<br>structure, gaussan zone, slag, old<br>workings, and occurrences of<br>Ocimum centraliafricanum a<br>copper plant. Occurrence of old<br>working is present mainly in the<br>contact of quartzite and garnet<br>biotite-schist along F2 fold hinges<br>The ground Geophysical survey wa<br>also carried out, covering 10L Km<br>in which magnetic anomaly, self<br>potential, IP chargeability and II<br>resistivity were measured. Four low<br>SP zones were marked mostly<br>concentrated on the east and north<br>part of the block, magnetic higl<br>on the east and west part of the<br>block, four zones having high II<br>chargeability mainly on the east<br>and central part of the block and<br>low IP resistivity at the eastern<br>part of the block were noticed. A<br>total 10 nos. of channel laid mainly<br>targeting the garnet-biotite schis<br>and impure dolomite, on whice<br>EPCH-1, 2 and 9 on garnet- biotit<br>schist and EPCH-4, 6 and 8 on<br>impure dolomite have indicated<br>positive results. The maximum<br>copper zone identified on the<br>channel at EPCH-2 having 0.56%<br>Cu with a thickness of 15.0m. The<br>maximum Pb concentration<br>delineated at EPCH-4 having 5.0m<br>thick with an average grade of 0.44%. The Maximum Zn observed<br>at EPCH-4 having 7.0m thickness<br>with an average grade of 0.47%. |

| Agency/              | Location                             | Mapı      | oing            | Dri                 | lling    | G 1:              | D 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|--------------------------------------|-----------|-----------------|---------------------|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block                       | Scale     | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Alwar                | Suratgarh block,<br>Thanagazi tehsil | 1:2000    |                 |                     | 1251.30  | 310               | The field work includes detailed<br>geological mapping of an area of<br>1.00 sq km on 1:2000 scale followed<br>by 1251.30m drilling in ten-<br>boreholes during FS 2021-22. A<br>total of 180 nos. of core samples<br>have been prepared and submitted<br>in the Chemical laboratory, WR for<br>analysis. Apart from this, in order<br>to assess the potentiality of<br>mineralised zones in respect of<br>copper and associated precious<br>metals, 33 cubic m pitting/ trenching<br>were carried out and a total of 20<br>nos. of PTS samples, 90 BRS/<br>channel samples, 10 nos. of<br>petrological samples and 10 nos. of<br>ore mineral samples have been<br>collected and submitted in the<br>respective laboratory of GSI, WR.<br>The lithologies intersected in the<br>boreholes drilled in Suratgarh block<br>are brecciated quartzite, dolomitic<br>marble intercalated with thin bands<br>of quartzite, banded dolomitic<br>marble and thin veins and veinlets<br>of quartz and carbonate. Sulphide<br>mineralisation has been intersected<br>in the form of specks,<br>dissemination, vein and fracture<br>filled bornite, chalcopyrite and<br>pyrrhotite. Borehole RJAS-1 has<br>intersected Im thick lean<br>mineralised zone of 0.12% Cu.<br>Borehole RJAS-2 has intersected<br>two lean mineralised zone of Im<br>thick with 0.11% and 0.13% Cu.<br>The analytical results are awaited<br>to estimate the resource of the<br>block. |
|                      | Around the Baraud<br>Dooghera        | - 1:12500 | 100             | -                   | -        | 284               | Exploration for copper and<br>associated precious metals in<br>Dooghera-Baraud block, Alwar,<br>Rajasthan has been taken up<br>involving large scale geological<br>mapping. An area of 100 sq. km was<br>mapped on 1:12,500 scale, 700 sq.<br>km ASTER image processing and a<br>total of 150 bed rock/channel<br>samples and 50 trench samples were<br>collected. Apart from this, 20<br>samples for petrography, 10 samples<br>for ore microscopy, 10 samples for<br>petrochemical analysis and 25 nos<br>of water samples have been<br>(contd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Agency/<br>Mineral/ | Location       | Maj   | oping           | Dri                 | lling    | Samulina          | Demontra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|----------------|-------|-----------------|---------------------|----------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District            | Area/<br>Block | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                |       |                 |                     |          |                   | collected from the study area. The<br>main rocks exposed in the area<br>includes impure dolomitic marble of<br>Kushalgarh Formation, brecciate<br>quartzite of Seriska Formation<br>graphite bearing mica schist, gara<br>bearing mica schist, chlorite mice<br>schist and carbon phyllite<br>pyritiferous quartzite of Bharkor<br>Formation. Apart from thi<br>numerous intrusive bodies are<br>present in the study area as, quart<br>reef, quartz veins and calcite veins<br>Alterations occurs in the form of<br>limonitisation and chloritisation<br>The rocks of the study area ha<br>undergone three stages of<br>deformation and the general tren<br>of rocks is NNE to SSW an<br>moderately dipping towards NW of<br>SE. The surface indications of bas<br>metal mineralisation are present i<br>the form of malachite stains an<br>fresh sulphides i.e., chalcopyrite<br>covellite, bornite, pyrrhotite an<br>pyrite within impure dolomiti<br>marble, carbon phyllite an<br>brecciated quartzite as well as i<br>quartz veins. A mineralisation zon<br>MZ-I has been delineated on the basis<br>of surface indications of<br>susface indications of<br>was also observed. Graphite preser<br>in the study area is thinly laminated<br>bedded and having flaky t<br>crystalline in morphology. It i<br>hosted by graphite bearing mic<br>schist, carbon phyllite and garac<br>bearing mica schist. Coppe<br>mineralisation is in the study area<br>were manifested by presence or<br>gossan zone in ferruginou<br>brecciated quartzite of Sariska Fm<br>Based on these surface indication<br>for copper mineralisation, on<br>mineralised zone (MZ-I) has bee<br>demarcated. The MZ-I, is lyin<br>within impure dolomitic marble of<br>the Kushlagarh Formation an<br>situated east of Baraud village. Th<br>strike length of mineralised zon<br>was trending in NNE-SSW directio |

| Agency/              | Location                            | Mapp    | oing            | Dri                 | lling    | G 1'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|-------------------------------------|---------|-----------------|---------------------|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block                      | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                     |         |                 |                     |          |                   | having strike extension of 350 m<br>and width varying from 3m to 6m.<br>Channel samples from copper<br>mineralised zone were collected and<br>submitted for analysis. The<br>chemical result of 03 number of<br>channel samples (DBCH-2, 3 and<br>4) shows Cu, Mn, and Fe content<br>from 10 ppm to 0.72%, 80 ppm to<br>0.17% and 0.70% ppm to 12.50%<br>respectively. The channel samples<br>(DBCH-4) analysed amaximum of<br>0.72% Cu, with 6m x 0.28% Cu, 2m<br>x 0.21%, 4m x 0.1% and 3m x 0.1%.<br>The chemical result of 50 nos. of<br>pitting trenching cum channel<br>samples indicates insignificant<br>amount of copper content (10 ppm<br>to 160 ppm). Petrochemical<br>sampling was carried out in the study<br>area to know the whole rock<br>geochemistry of all the litho-units<br>present in the study area. Most of<br>the analytical results are awaited<br>with Chemical Division, GSI, WR.<br>Graphite mineralisation was also<br>observed within graphite mica<br>schist, carbonaceous phyllite and<br>garnet bearing mica schist of<br>Bharkol Formation of Ajabgarh<br>group. A mineralised zone (MZ-II)<br>is delineated over a strike length of<br>5.25 Km and width up to 20m. 02<br>nos. of channel and 17 nos. grab<br>bed rock samples were collected to<br>check the fixed carbon analysis and<br>vanadium, Mo and REE. |
| REE & RM<br>Sirohi   | Mungthala-Mawal-<br>Bhaisasing area | 1:12500 | 100             | -                   |          | -                 | The work includes large scale<br>mapping of an area of 100 sqkm on<br>1:12,500 scale. A total of 167<br>bedrock samples, 30 pit/trench<br>samples, 26 petro-chemical<br>samples, 40 soil samples, 40 stream<br>sediment samples and 20 heavy<br>mineral samples were collected<br>during field work. All the samples<br>have been submitted to Chemical<br>analysis. Apart from this, 24<br>petrological samples, 20 ore<br>microscopy samples, 5 XRD and 5<br>EPMA samples were also submitted<br>in the respective laboratories of GSI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Agency/<br>Mineral/ | Location<br>Area/ | Mapping |                 | Dn                  | lling    | Sampling          | Pomorka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|-------------------|---------|-----------------|---------------------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District            | Area/<br>Block    | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     |                   |         | (sq km)         | boreholes           |          |                   | The litho-units observed durin<br>mapping were calc-silicate rock<br>impure marble, skarn, biotit<br>granitoid, medium and coars<br>grained granitoid, gabbro, an<br>sheared/brecciated cherty quartze<br>feldspathic rock. Several skar<br>zones were observed in the are<br>by presence of garnet an<br>pyroxene. The granitoid ar<br>brecciated and sheared at places<br>Most of the area is covered b<br>Quaternary sediments of Holocen<br>age comprising of Thar Deser<br>Formation. Structural feature<br>recorded in the area ar<br>represented by bedding, lineation<br>foliation, joint, fold and shea<br>zone. Granites are jointed an<br>sheared. The surface indication of<br>mineralisation in the area if<br>manifested by the presence of<br>chalcopyrite within quartz veir<br>malachite staining, limonitic veir<br>sulfides within skarn an<br>brecciated/sheared quartze<br>feldspathic rock/silicified breccia<br>pyrrhotite, epidote vein, iro<br>staining on skarn rock.Veinlets of<br>magnetite in gabbroic rock/mafi<br>rock, magnetite associated wit<br>quartz veins intruding granite an<br>sediments near skarn zone ha<br>been recorded at several places<br>Rutile, Ilmenite, and sulphid<br>bearing micro-pegmatite<br>epidotisation, goethit<br>development at fracture and join<br>surfaces of brecciated quartz vei<br>and veins of iron-carbonate, iro<br>box-work, ferrugenisation an<br>limonitisation inbrecciated<br>sheared quartzo-feldspathic rock<br>silicified breccias is also preser<br>in the area. The samples collected<br>from the study area were submitte<br>in the respective laboratories of<br>GSI WR, Jaipur for Chemica<br>analysis. The analytical results of |

| Agency/              | Location                     | Mapp    | oing            | Dri                 | lling    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|------------------------------|---------|-----------------|---------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block               | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Barmer               | Sainji Ki Beri-<br>Meli area | 1:12500 | 108             | -                   |          | -                 | A G4 stage exploration in Sainji Ki<br>Beri-Meli area in toposheet no.<br>45C/06 was taken up to delineate<br>zones of REE & associated RM<br>mineralisation and to demarcate<br>younger intrusive phases. Large scale<br>geological mapping has been carried<br>out over an area of 108 sq. km on<br>1:12,500 scale along with collection<br>of various sample media. During<br>mapping, a total of 29 nos. of<br>different flows of rhyolites were<br>marked on the basis of the<br>characteristics of groundmass<br>colour, mineral composition of<br>phenocrysts (viz. globular quartz,<br>K-feldspar, Na-feldspar etc.), size<br>and shape of the phenocrysts as well<br>as presence of vesicles. The rhyolitic<br>flows are well jointed and the joint<br>planes are intruded by basic and felsic<br>dykes. Felsic dykes are<br>comparatively thicker than basic<br>ones. Felsic dykes are showing coarse<br>grained texture primarily composed<br>of K-feldspar, Na-feldspar and<br>quartz. Often K-feldspars are<br>rimmed by Na-feldspar. All<br>basicdykes are fine grained and<br>highly weathered. Complete analysis<br>of submitted samples is awaited. |
| Sikar                | South East of<br>Nanagwas    | 1:1000  | 1               | 9                   | -        |                   | The Southeast of Nanagwas area<br>is located about 20 kms east of<br>Neem ka Thana tehsil, Sikar<br>district, Rajasthan. The area falls<br>in toposheet No. 45M/14.<br>Geologically, the area exposes the<br>rocks of the Ajabgarh Group of the<br>Delhi Supergroup. The exposed<br>lithounits are quartz biotite schist<br>with magnetite band and banded<br>impure marble of the Kushalgarh<br>Formation, quartzite of the Seriska<br>Formation and Jaitpura granite.<br>Apart from this, numerous intrusive<br>bodies' viz. pegmatite veins, quartz<br>veins, calcite veins, albitite veins<br>are present in the study area. General<br>strike of rocks is NE to SW and dip<br>varies from 55° to 85° towards west.<br>The area has undergone three<br>phases of deformation. The second-<br>(contd)                                                                                                                                                                                                                                                                                                                                                             |

| Agency/              | Location       | Maj   | oping           | Dri                 | lling    | G 1'              | Pamarka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|----------------|-------|-----------------|---------------------|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block | Scale | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Remarks<br>Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                |       |                 |                     |          |                   | generation deformation is morprominent which controls the<br>topography of the area. During the<br>period, an area of 1.00 sq km wa<br>mapped on 1:1000 scale along with<br>delineation of host of REI<br>mineralisation (quartz biotite schiss<br>with magnetite band/partings). A<br>total of 09 nos. of geochemica<br>profiles has been led across the<br>quartz biotite schist with magnetite<br>band/partings over 1500m strike<br>length and 0.50 to 03 m width<br>Occurrence of base meta<br>mineralisation was also demarcated<br>over 250 m strike length with very<br>restricted width of about 1m in the<br>form of fresh copper sulphides i.e.<br>chalcocite, bornite and chalcopyrit<br>along with pyrite and malachite<br>stains. The analytical results o<br>channels SENCH-01 (2m x 0.26%<br>tREE), SENCH-02 (0.50m x 0.24%<br>tREE), SENCH-03 (0.50m x 0.11%<br>tREE), SENCH-05 (3.0m x 0.68%<br>tREE), SENCH-05 (3.0m x 0.68%<br>tREE), SENCH-06 (1m x 0.19%<br>total REE and 2m x 0.24% tREE)<br>SENCH-07 (3m x 0.21% tREE) and<br>SENCH-08 (2.5m x 0.14% tREE<br>indicated anomalous values of tREI<br>on surface. On the basis of surface<br>anomalous values of tREE and Rar-<br>Metals in SE of Nanagwas area. Al<br>the borehole intersected quartzite<br>quartz biotite schist with magnetite<br>band/partings (host lithology o<br>REE mineralisation in the area)<br>amphibole bearing dolomitic marbla<br>and albitite-quartz-calcite veinss<br>The subsurface feeble and sporadi-<br>occurrence of copper mineralisation<br>was also reported in the form of vein<br>filled bornite and chalcopyrite in few<br>boreholes. All the boreholes RJSSN<br>01 to RJSSN-09 intersected irror<br>(magnetite-hematite) in the form<br>of thick bands, thin partings, smal<br>laths and crystals hosted withir<br>quartz biotite schist and are mostly<br>associated with calcite and albititive<br>veins. Chemical analytical results o<br>core samples are awaited. |

| Agency/              | Location<br>Area/                                    | Mapping              |                 | Dri                 | lling    | G 1'              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|------------------------------------------------------|----------------------|-----------------|---------------------|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block                                       | Scale                | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tungsten, L<br>Pali  | .ithium and associ<br>Mohangarh<br>(Motiya)<br>Block | ated miner<br>1:2000 | alisation<br>2  | -                   |          |                   | During field season 2021-22, th<br>area around Mohangarh (Motiya) it<br>taken up for G3-investigation wit<br>an objective 1) To assess th<br>potentiality of tungsten, lithium an<br>associated mineralisation. 22<br>Genetic and metallogeni<br>correlation with Degana Tungste<br>prospect, if any. During FS 2021<br>22, detailed geological mapping o<br>1:2000 scale of 2 sq. km area wa<br>carried out and two major litho unit<br>were identified and demarcated viz<br>mica schist/phyllite and granit<br>gneiss. Mica schist is fine graine<br>rock with quartz, mica as essentia<br>mineral composition. Granit<br>Gneiss is coarse to medium graine<br>leucocratic rock with Quartz (55<br>60%), feldspar (35-40%), mica (3<br>4%), tourmaline (1-2%) as major<br>mineral phases. Contact of mic<br>schist and Granite Gneiss is sheare<br>which is evident by development of<br>mineral lineation and s-c fabric an<br>sub-grain formation in granite gneiss<br>near the contact. Two sets of<br>foliations are well developed an<br>preserved in quartz and quartz<br>tourmaline veins intruded in granit<br>gneiss (near the contact).<br>Disseminated wolframite grains ar<br>observed in quartz and quartz<br>tourmaline veins intruded in granit<br>gneiss near the contact. Total fiv<br>numbers of major mineralised quart<br>and quartz tourmaline veins wit<br>visible wolfram grains of varyin<br>size from 1 mm to 6 cm ar<br>identified and recorded. These vein<br>are varying in thickness from 5 cr<br>to 2m and exposed strike length i<br>about 700m. The general trend co<br>quartz and quartz tourmaline veins wit<br>visible wolfram grains of varyin<br>size from 1 mm to 6 cm ar<br>identified and recorded. These vein<br>are varying in nature and dipping eithe<br>side at places. Total 50 nos. of<br>Channel samples, 100 nos. of be<br>rock samples, 50nos of polishe<br>sections, 30 nos. of petrochemicz<br>samples and 25 nos. of soil sample<br>had been collected and submitted t<br>respective laboratories. Th<br>analytical results 21 bed roc |

| Agency/              | Location       | Mapping |                 | Dri                 | lling    | G 1.              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|----------------|---------|-----------------|---------------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral/<br>District | Area/<br>Block | Scale   | Area<br>(sq km) | No. of<br>boreholes | Meterage | Sampling<br>(No.) | Reserves/Resources estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                |         |                 |                     |          |                   | samples have been received from the<br>Chemical laboratory on which 1<br>sample is having 28000 ppm and<br>one more sample having upto 6000<br>ppm tungsten, 50 channel sample<br>result also received from the<br>Chemical laboratory out of which 1<br>sample of MCH-7 is showing 3273<br>ppm W value, 6 PCS samples result<br>also received on which 2 samples<br>are giving more than 6000 ppm<br>tungsten value. 15 L Km of ground<br>geophysical survey SP, IP, Gravity,<br>Magnetic & Resistivity was carried<br>out. Drilling is being taken up during<br>FS 2022-23 to establish strike<br>extension and depth continuity of<br>W-mineralised zones intersected in<br>the earlier drilled boreholes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Limestone<br>Sikar   | Maonda area    | 1:2000  | 1.63            | 8                   | 434.20   | 7                 | The item comprised of detailed<br>geological mapping of 1.63 sq km<br>area on 1:2000 scale and a total core<br>drilling of 400 m involving 08 nos.<br>of boreholes each having a depth of<br>50m with having borehole spacing<br>of 400m. A total of 8 boreholes<br>(RJNN-1 to RJNN-8) were drilled<br>in the area, which involved 434.20<br>m of drilling. The rock types<br>exposed in the block are micaceous<br>quartzite, dolomitic marble, mica<br>schist, quartz-feldspar vein and<br>impure marble of the Kushalgarh<br>Formation of the Ajabgarh group.<br>During the investigation, 07 nos.<br>bed rock samples were collected and<br>analysed. The chemical analysis of<br>07 nos. of bed rock samples from<br>impure marble indicated weighted<br>average grade of CaO-48.97%,<br>SiO2-5.71%, MgO-4.32%, Al2O3-<br>0.56% and Fe2O3-0.57%. 03 nos.<br>of samples out of 07 nos. have more<br>the 5% MgO. Analytical results of<br>bed rock samples indicate that<br>impure marble unit (high CaO and<br>low SiO2 except high MgO) is<br>suitable for cement grade. Impure<br>marble has been intersected in 05<br>nos. boreholes out of 08nos. of<br>boreholes. Borehole nos. RJNN-2,<br>RJNN-6 and RJNN-7 has been<br>intersected thick micaceous<br>quartzite. |

#### STATE REVIEWS

#### Table – 4 : Mineral Production in Rajasthan, 2019-20 to 2021-22 (Excluding Atomic Minerals)

(Value in ₹ '000)

|                   |       | 2019-20         |          |           | 2020-21         |          |           | 2021-22 (p)     |          |           |
|-------------------|-------|-----------------|----------|-----------|-----------------|----------|-----------|-----------------|----------|-----------|
| Mineral           | Unit  | No. of<br>mines | Qty      | Value     | No. of<br>mines |          | Value     | No. of<br>mines | Qty      | Value     |
| All Minerals      |       | 85              |          | 257025185 | 88              |          | 308261370 | 91              |          | 305036202 |
| Lignite           | '000t | -               | 8223     | -         | -               | 9056     | -         | -               | 10526    | -         |
| Natural Gas (ut.) | m c m | -               | 1883     | -         | -               | 2040     | -         | -               | 2619     | -         |
| Petroleum(crude)  | '000t | -               | 6653     | -         | -               | 5891     | -         | -               | 5887     | -         |
| Copper Ore        | t     | -               | 1119523  | -         | -               | 991991   | -         | -               | 1101339  | -         |
| Copper Conc.      | t     | 2               | 51832    | 3094145   | 2               | 42590    | 3371952   | 2               | 49399    | 5463975   |
| Iron Ore          | '000t | 10              | 1012     | 3677013   | 9               | 1088     | 5106818   | 10              | 1235     | 5574588   |
| Lead & Zinc Ore   | t     | -               | 14479032 | -         | - 1             | 15455342 | -         | -               | 16338461 | -         |
| Lead Conc.        | t     | 10              | 351746   | 18260832  | 10              | 376923   | 18810483  | 10              | 368040   | 22366174  |
| Zinc Conc.        | t     | *               | 1446824  | 60438504  | *               | 1513996  | 63127101  | *               | 1594086  | 81815818  |
| Manganese Ore     | t     | 1               | 9937     | 29811     | 1               | 6940     | 20820     | 1               | 8008     | 25626     |
| Silver **         | kg    | -               | 609153   | 25608038  | -               | 705676   | 42657180  | -               | 647013   | 42115418  |
| Phosphorite       | t     | 1               | 1300229  | 4637009   | 1               | 1357949  | 4602518   | 1               | 1281349  | 7505078   |
| Garnet (abrasive) | t     | 5               | 568      | 1775      | 7               | 7114     | 26378     | 5               | 8182     | 29880     |
| Limestone         | '000t | 38              | 72390    | 19094468  | 39              | 74266    | 19449722  | 41              | 87679    | 22220563  |
| Magnesite         | t     | -               | -        | -         | -               | -        | -         | 1               | -        | -         |
| Selenite          | t     | 2               | 2154     | 4206      | 3               | 402      | 602       | 4               | 756      | 1022      |
| Siliceous Earth   | у     | 12              | 19367    | 11710     | 12              | 23823    | 14686     | 13              | 31783    | 21209     |
| Wollastonite      | t     | 4               | 124757   | 139695    | 4               | 103902   | 122210    | 3               | 108383   | 99265     |
| Minor Minerals    |       | -               | -        | 122027979 | -               | -        | 150950900 | -               | -        | 117797586 |

Note : The number of mines excludes Fuel and Minor minerals.

\$ Excludes the value of Fuel minerals.

\* Number of mines covered under lead concentrates. \*\* Recovered at Chanderiya Lead-Zinc Smelter of HZL (as by product) from lead concentrates produced in Rajasthan.

#### **Mineral-based Industry**

The present status of each mineral-based industry is not readily available. However, the important mineral-based industries in the organised sector in the State are given in Table - 5.

#### Table – 5 : Principal Mineral-based Industries

| Industry/plant                                                                            | Capacity<br>('000 tpy)                 |
|-------------------------------------------------------------------------------------------|----------------------------------------|
| Cement                                                                                    |                                        |
| ACC Ltd, Lakheri, Distt. Bundi                                                            | 1500                                   |
| Ambuja Cements Ltd, Rabriyawas, Distt. Pali                                               | 3600                                   |
| Binani Cement, Binanipuram, Distt. Sirohi                                                 | 4850                                   |
| Binani Cement, Neem Ka Thana, Distt. Sikar                                                | (G) 1400                               |
| Birla Corporation Ltd, (Birla Cement Works<br>Chanderia Cement Works), Distt. Chittorgarh |                                        |
| India Cements Ltd, Jhalo ka garha Garhi                                                   | 1800                                   |
| J.K. Cement, Nimbahera, Distt. Chittorgarh                                                | 3250                                   |
| J.K. Cement, Mangrol, Distt. Chittorgarh                                                  | 2500                                   |
| J.K. Cement, Gotan, Distt. Nagaur                                                         | 500                                    |
| J.K. White Cement Works, Gotan, 61<br>Merta, Distt. Nagaur                                | 10 (white Cement)<br>500 (white Putty) |
| J.K. Laxmi Cement, Banas, Distt. Sirohi                                                   | 8700                                   |
| NUVOCO Vistas(Lafarge) India Ltd, Nimbahe<br>Distt. Chittorgarh                           | era, 2600                              |
| Mangalam Cement (Mangalam Cement &<br>Neer Shree Cement), Morak, Distt. Kota              | 3250                                   |
| Nirma Limited, Nimbol, Jaitaran                                                           | 2280                                   |
| Shree Cement Ltd, Beawar, Distt. Ajmer                                                    | 3000                                   |
| Shree Cement Ltd, Andherideori, , Masuda, Ag                                              | jmer 3600                              |
| Shree Cement Ltd, Ras, Distt. Pali                                                        | 3000                                   |
| Shree Cement Ltd, Ras ,Jaitaran, Distt. Pali                                              | 4000                                   |
| Shree Cement Ltd, Kushkhera, Distt. Alwar (C                                              | G) 3500                                |
| Shree Cement Ltd, Suratgarh,<br>Distt. Sri Ganganagar (G)                                 | 1800                                   |
| Shree Cement Ltd, Suratgarh, Rohi, Udaipur-U<br>Distt. Sri Ganganagar (G)                 | Udasar 3600                            |
| Shree Cement Ltd, Jobner, Distt. Jaipur (G)                                               | 1500                                   |
| Shriram Cement Works, Kota                                                                | 400                                    |
| Trinetra Cement (Subsidiary of India Cement<br>Nokhala, Distt. Banswara                   | ), 1800                                |
| Udaipur Cement Works (Subsidiary of JKCL),<br>Udyog Ltd,), Distt. Udaipur                 | 1240                                   |
| Ultra Tech Cement (Birla White Cement<br>Division), Kharia Khangar, Bhopalgarh            | 680 (white<br>cement)<br>400 (putty)   |
| Ultra Tech Cement Nathdwara<br>Binnani Cement Ltd,Amli,Pindwara                           | 4850 (cement)                          |
|                                                                                           | (contd)                                |

Table - 5 (contd)

| Industry/plant                                                                       | Capacity<br>('000 tpy)                              |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|
| UltraTech Cement (Aditya I & II),<br>Shambhupura, Distt. Chittorgarh                 | 8000                                                |
| UltraTech Cement, Kotputali, Distt. Jaipu<br>Wonder Cement, Nimbahera, Distt. Chitto |                                                     |
| Chemical<br>DCM Shriram Industries Ltd,<br>Distt.Kota 7.                             | 9 (rayon/yarn)<br>7 (sodium sulphate)               |
| Modi Alkalies & Chemicals Ltd,<br>Distt. Alwar 50                                    | 84.2 (caustic soda)<br>0.3 (Cl), 39.6 (HCl)         |
| <b>Ceramics/Chemicals</b><br>Bikaner Ceramics Pvt. Ltd, Distt. Bikaner               | 9 (insulators)                                      |
| Kajaria Ceramics Ltd, Gailpur                                                        | 6.5 (mill. sq m)                                    |
| Kajaria Ceramics Ltd, Malootana                                                      | 24.5 (mill. sq m)                                   |
| Bhalla Chemical Works Pvt Ltd                                                        | 10 (zirconium<br>oxychloride &<br>special zirconia) |
| Roca Bathroom Product Pvt Ltd, Distt. A                                              | lwar 12.9                                           |
| Roca Bathroom Product Pvt Ltd, Distt. A                                              | lwar 2 mill. pc.                                    |
| Fertilizer                                                                           |                                                     |
| Adheeshaa Phosphate, Umarada, Distt. Uc                                              | laipur 132 (SSP)                                    |
| Arawali Phosphate Ltd, Umra, Distt. Udai                                             | ipur 40 (SSP)                                       |
| Arihant Phosphate & Fertlizers Ltd,<br>Nimbaheda, Distt. Chittorgarh                 | 66 (SSP)                                            |
| Bohra Industries Ltd, Umra, Distt. Udaipu                                            | r 200 (SSP)                                         |
| Chambal Fertilizers & Chemicals Ltd,<br>Gadepan, Distt. Kota                         | 180 (SSP)                                           |
| Coromandel International Ltd, (Formerly<br>Liberty Phosphate Ltd), Jagpura, Distt. K | · · · · · · · · · · · · · · · · · · ·               |
| Devyani Phosphate Pvt. Ltd, Distt. Udaip                                             | our 60 (SSP)                                        |
| Dharamsi Morarji Chemical Co. Ltd,<br>Khemli, Distt. Udaipur                         | 66 (SSP)                                            |
| Gayatri Spinners Ltd, Hamirgarh, Distt. B                                            | Bhilwara 30 (SSP)                                   |
| Indian Phosphate Ltd, Umrada, Distt. Uda                                             | aipur 130 (SSP)                                     |
| Jagdamba Phosphate,Distt. Kota                                                       | 132 (SSP)                                           |
| Jubilant Agri and Consumer Products Ltd,<br>Singhpur, Kapasan, Distt. Chittorgarh    | 264 (SSP)                                           |
| Khaitan Chemical & Fertilizers Ltd,<br>Dhinwa, Distt. Chittorgarh                    | 198 (SSP)                                           |
| Mangalam Phosphates Ltd, Hamirgarh,<br>Distt. Bhilwara                               | 72 (SSP)                                            |
| Ostwal Phoschem (India) Ltd, Hamirgarh,<br>Distt. Bhilwara                           |                                                     |
| Patel Phoschem (P) Ltd, Umarda, Distt. U                                             | Udaipur 100 (SSP)                                   |
|                                                                                      |                                                     |

(contd)

#### STATE REVIEWS

#### Table - 5 (contd)

#### Table - 5 (concld)

| Industry/plant                                                                          | Capacity                              |
|-----------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                         | ('000 tpy)                            |
| Rama Phosphates Ltd, Umra, Distt. Udaipur                                               | 181 (SSP)                             |
| Sadhana Phosphates & Chems Ltd, Gudli,<br>Distt. Udaipur                                | 120 (SSP)                             |
| Shriram Fertilizers & Chemicals Ltd, 37                                                 | 9.5 (Urea)                            |
| 13.2 (bleaching                                                                         | ng powder)<br>61.2 (HCl)<br>61.2 (Cl) |
| Shri Ganapati Fertilizers Ltd, Kapasan,<br>Distt. Chittorgarh                           | 99 (SSP)                              |
| Shurvi Colour Chem Ltd, Madri, Distt. Udaipur                                           | 12 (SSP)                              |
| Plaster of Paris                                                                        |                                       |
| Abhishek Plaster Industries, Baramsar,<br>Distt. Hanumangarh                            | 6.1                                   |
| Agrawal Industries, Nohar, Distt. Hanumangarh                                           | 6.3                                   |
| Balaji Plaster Industries, Taranagar, Distt. Churu                                      | 6                                     |
| Balaji Industries, Taranagar, Distt. Churu                                              | 6.5                                   |
| Ganesh Plaster Industries, Taranagar, Distt. Churu                                      | 6                                     |
| Gil Brothers, Taranagar, Distt. Churu                                                   | 7.1                                   |
| Hind Plaster Industries, Taranagar, Distt. Churu                                        | 6                                     |
| Jaishri Plaster Industries, Taranagar, Distt. Churu                                     | 6.3                                   |
| Jagdamba Plaster Industries, Rawatsav,<br>Distt. Hanumangarh                            | 7                                     |
| Coromandel International Ltd, (Formerly<br>Liberty Phosphate Ltd), Jagpura, Distt. Kota | 132 (SSP)                             |
| Devyani Phosphate Pvt. Ltd, Distt. Udaipur                                              | 60 (SSP)                              |
| Dharamsi Morarji Chemical Co. Ltd,<br>Khemli, Distt. Udaipur                            | 66 (SSP)                              |
| Jai Bhavani Plaster Industries, Baramsar,<br>Distt. Hanumangarh                         | 6                                     |
| Jai Sriram Plaster Industries, Taranagar, Distt. Chur                                   | u 7.1                                 |
| M.G. Plaster Pvt Ltd, Taranagar, Distt. Churu                                           | 6.2                                   |
| Mahabir Plaster Industries, Taranagar, Distt. Churu                                     | 6                                     |
| Multani Industries, Nohar, Distt. Hanumangarh                                           | 8.4                                   |
|                                                                                         | (contd)                               |

| Industry/plant                                                        | Capacity<br>('000 tpy) |
|-----------------------------------------------------------------------|------------------------|
| R.D. Plaster Industries, Nohar, Distt. Hanuman                        | garh. 8.4              |
| R.N. Industries, Bikaner, Distt. Bikaner                              | 18                     |
| Shalimar Plaster & Chemical Industries,<br>Sardarshahar, Distt. Churu | 14                     |
| Shri Lakshmi Gypsum, Chak, Distt. Hanumanga                           | arh 6                  |
| Shriram Plaster, Taranagar, Distt. Churu                              | 6.3                    |
| SS Plaster Industries, Taranagar, Distt. Churu                        | 6                      |
| Shiv Bhakti Industries, Nohar, Distt Hanuman                          | garh 8.4               |
| Tiger Plaster, Sardarshahar, Distt. Churu                             | 11                     |
| The Sardarshahar Plaster & Minerals,<br>Sardarshahar, Distt. Churu    | 19.4                   |
| Updesh Industries Ltd, Chak, Distt. Hanumanga                         | urh 9                  |
| Pellet<br>Jindal Saw Limited, Pur, Bilwara                            | 1500                   |
| Power generation                                                      |                        |
| JSW Energy Barmer Ltd, Bhadresh.                                      | 1080 MW                |
| Copper Smelters                                                       |                        |
| HCL, KCC, Distt. Jhunjhunu. 3                                         | l (Cu cathode)         |
| Rajpura Dariba Lead & Zinc Mine 76.827                                | ( Zinc Conc.)          |
| Dariba, Distt. Rajsamand 17.50                                        | 6(lead Conc. )         |
| Lead & Zinc Smelters                                                  |                        |
| HZL Zinc Smelter, Debari, Distt. Udaipur.                             | 88 (Zn)                |
| HZL Lead-zinc Smelter, Chanderiya,                                    | 85 (Pb)                |
| Distt. Chittorgarh.                                                   | 525 (Zn)               |
|                                                                       | 0.833 (Cd)*            |
| 16                                                                    | 58 tonnes (Ag)         |
| HZL, Dariba Smelting Complex, Dariba<br>Distt. Rajsamand.             | 100 (Pb)<br>210 (Zn)   |
| * Total for all smelters of HZL                                       |                        |

(G); Grinding Units

**Note:** Data sourced from Indian Fertilizer Scenario, FAI Statistics and Survey of Cement Industry & Directory respectively.